Bennati Marina, Lendzian Friedhelm, Schmittel Michael, Zipse Hendrik
Institut für Physikalische und Theoretische Chemie und BMRZ, J.W. Goethe-Universität Frankfurt, Marie-Curie-Str. 11, D-60439 Frankfurt am Main, Germany.
Biol Chem. 2005 Oct;386(10):1007-22. doi: 10.1515/BC.2005.117.
Ribonucleotide reductases (RNRs) catalyze the production of deoxyribonucleotides, which are essential for DNA synthesis and repair in all organisms. The three currently known classes of RNRs are postulated to utilize a similar mechanism for ribonucleotide reduction via a transient thiyl radical, but they differ in the way this radical is generated. Class I RNR, found in all eukaryotic organisms and in some eubacteria and viruses, employs a diferric iron center and a stable tyrosyl radical in a second protein subunit, R2, to drive thiyl radical generation near the substrate binding site in subunit R1. From extensive experimental and theoretical research during the last decades, a general mechanistic model for class I RNR has emerged, showing three major mechanistic steps: generation of the tyrosyl radical by the diiron center in subunit R2, radical transfer to generate the proposed thiyl radical near the substrate bound in subunit R1, and finally catalytic reduction of the bound ribonucleotide. Amino acid- or substrate-derived radicals are involved in all three major reactions. This article summarizes the present mechanistic picture of class I RNR and highlights experimental and theoretical approaches that have contributed to our current understanding of this important class of radical enzymes.
核糖核苷酸还原酶(RNRs)催化脱氧核糖核苷酸的生成,而脱氧核糖核苷酸对于所有生物体的DNA合成和修复至关重要。目前已知的三类RNRs据推测通过一个瞬态硫自由基利用相似的机制进行核糖核苷酸还原,但它们在产生该自由基的方式上有所不同。I类RNR存在于所有真核生物、一些真细菌和病毒中,它在第二个蛋白质亚基R2中利用一个双铁中心和一个稳定的酪氨酰自由基,在亚基R1的底物结合位点附近驱动硫自由基的产生。在过去几十年广泛的实验和理论研究基础上,一个I类RNR的通用机制模型已经形成,展示了三个主要的机制步骤:亚基R2中的双铁中心产生酪氨酰自由基,自由基转移以在亚基R1中结合的底物附近产生假定的硫自由基,最后催化还原结合的核糖核苷酸。氨基酸或底物衍生的自由基参与了所有这三个主要反应。本文总结了I类RNR目前的机制情况,并强调了有助于我们当前对这类重要自由基酶理解所采用的实验和理论方法。