Department of Chemical and Biological Physics, The Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel.
Department of Chemical Research Support, The Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel.
J Am Chem Soc. 2024 Mar 6;146(9):6157-6167. doi: 10.1021/jacs.3c13745. Epub 2024 Feb 23.
Fluorine electron-nuclear double resonance (F ENDOR) has recently emerged as a valuable tool in structural biology for distance determination between F atoms and a paramagnetic center, either intrinsic or conjugated to a biomolecule via spin labeling. Such measurements allow access to distances too short to be measured by double electron-electron resonance (DEER). To further extend the accessible distance range, we exploit the high-spin properties of Gd(III) and focus on transitions other than the central transition (|-1/2⟩ ↔ |+1/2⟩), that become more populated at high magnetic fields and low temperatures. This increases the spectral resolution up to ca. 7 times, thus raising the long-distance limit of F ENDOR almost 2-fold. We first demonstrate this on a model fluorine-containing Gd(III) complex with a well-resolved F spectrum in conventional central transition measurements and show quantitative agreement between the experimental spectra and theoretical predictions. We then validate our approach on two proteins labeled with F and Gd(III), in which the Gd-F distance is too long to produce a well-resolved F ENDOR doublet when measured at the central transition. By focusing on the |-5/2⟩ ↔ |-3/2⟩ and |-7/2⟩ ↔ |-5/2⟩ EPR transitions, a resolution enhancement of 4.5- and 7-fold was obtained, respectively. We also present data analysis strategies to handle contributions of different electron spin manifolds to the ENDOR spectrum. Our new extended F ENDOR approach may be applicable to Gd-F distances as large as 20 Å, widening the current ENDOR distance window.
氟电子-核双共振(F ENDOR)最近成为结构生物学中一种有价值的工具,可用于确定 F 原子与顺磁中心之间的距离,无论是生物分子内部的固有顺磁中心还是通过自旋标记共轭的顺磁中心。这些测量方法可以测量双电子电子共振(DEER)无法测量的过短距离。为了进一步扩展可访问的距离范围,我们利用 Gd(III) 的高自旋特性,并专注于除中心跃迁(|-1/2 ⟩↔|+1/2 ⟩)以外的跃迁,这些跃迁在高磁场和低温下更为丰富。这将光谱分辨率提高了约 7 倍,从而将 F ENDOR 的长距离极限提高了近 2 倍。我们首先在一个含有氟的 Gd(III) 模型配合物上进行了演示,该配合物在常规中心跃迁测量中具有分辨率良好的 F 谱,并在实验光谱和理论预测之间显示出定量一致。然后,我们在两个用 F 和 Gd(III) 标记的蛋白质上验证了我们的方法,在这些蛋白质中,当在中心跃迁处测量时,Gd-F 距离太长,无法产生分辨率良好的 F ENDOR 双峰。通过关注 |-5/2 ⟩↔|-3/2 ⟩和 |-7/2 ⟩↔|-5/2 ⟩ EPR 跃迁,分别获得了 4.5 倍和 7 倍的分辨率增强。我们还提出了数据分析策略来处理不同电子自旋态对 ENDOR 光谱的贡献。我们的新扩展 F ENDOR 方法可能适用于高达 20 Å 的 Gd-F 距离,从而拓宽了当前的 ENDOR 距离窗口。