Small Dylan S, Ten Have Thomas R, Joffe Marshall M, Cheng Jing
Department of Statistics, Wharton School, University of Pennsylvania, 464 JMHH/6340, Philadelphia, PA 19104, USA.
Stat Med. 2006 Jun 30;25(12):1981-2007. doi: 10.1002/sim.2313.
We present a random effects logistic approach for estimating the efficacy of treatment for compliers in a randomized trial with treatment non-adherence and longitudinal binary outcomes. We use our approach to analyse a primary care depression intervention trial. The use of a random effects model to estimate efficacy supplements intent-to-treat longitudinal analyses based on random effects logistic models that are commonly used in primary care depression research. Our estimation approach is an extension of Nagelkerke et al.'s instrumental variables approximation for cross-sectional binary outcomes. Our approach is easily implementable with standard random effects logistic regression software. We show through a simulation study that our approach provides reasonably accurate inferences for the setting of the depression trial under model assumptions. We also evaluate the sensitivity of our approach to model assumptions for the depression trial.
我们提出了一种随机效应逻辑回归方法,用于在存在治疗不依从和纵向二元结局的随机试验中估计依从者的治疗效果。我们使用该方法分析了一项初级保健抑郁症干预试验。使用随机效应模型来估计疗效,这是对基于随机效应逻辑模型的意向性治疗纵向分析的补充,随机效应逻辑模型常用于初级保健抑郁症研究。我们的估计方法是纳格尔克等人针对横断面二元结局的工具变量近似法的扩展。我们的方法可以很容易地用标准的随机效应逻辑回归软件实现。通过模拟研究,我们表明在模型假设下,我们的方法为抑郁症试验的设定提供了合理准确的推断。我们还评估了我们的方法对抑郁症试验模型假设的敏感性。