Rosychuk R J, Sheng X, Stuber J L
Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada T6G 2J3.
Stat Med. 2006 Jun 15;25(11):1906-21. doi: 10.1002/sim.2367.
We examine the behaviour of the variance-covariance parameter estimates in an alternating binary Markov model with misclassification. Transition probabilities specify the state transitions for a process that is not directly observable. The state of an observable process, which may not correctly classify the state of the unobservable process, is obtained at discrete time points. Misclassification probabilities capture the two types of classification errors. Variance components of the estimated transition parameters are calculated with three estimation procedures: observed information, jackknife, and bootstrap techniques. Simulation studies are used to compare variance estimates and reveal the effect of misclassification on transition parameter estimation. The three approaches generally provide similar variance estimates for large samples and moderate misclassification. In these situations, the resampling methods are reasonable alternatives when programming partial derivatives is not appealing. With smaller chains or higher misclassification probabilities, the bootstrap method appears to be the best choice.
我们研究了具有错误分类的交替二元马尔可夫模型中方差 - 协方差参数估计的行为。转移概率指定了一个不可直接观测过程的状态转移。在离散时间点获得可观测过程的状态,该状态可能无法正确分类不可观测过程的状态。错误分类概率捕获了两种类型的分类错误。使用三种估计程序计算估计转移参数的方差分量:观测信息、刀切法和自助法技术。通过模拟研究来比较方差估计,并揭示错误分类对转移参数估计的影响。对于大样本和中等程度的错误分类,这三种方法通常提供相似的方差估计。在这些情况下,当编程计算偏导数不太可行时,重采样方法是合理的替代方法。对于较短的链或较高的错误分类概率,自助法似乎是最佳选择。