Alpizar-Jara Russell, Smith Charles E
North Carolina State University Statistics, Campus Box 8203, North Carolina State University, Raleigh, NC 27695-8203, United States.
Math Biosci. 2008 Jul-Aug;214(1-2):11-9. doi: 10.1016/j.mbs.2008.01.004. Epub 2008 Jan 26.
Wileyto et al. [E.P. Wileyto, W.J. Ewens, M.A. Mullen, Markov-recapture population estimates: a tool for improving interpretation of trapping experiments, Ecology 75 (1994) 1109] propose a four-state discrete time Markov process, which describes the structure of a marking-capture experiment as a method of population estimation. They propose this method primarily for estimation of closed insect populations. Their method provides a mark-recapture estimate from a single trap observation by allowing subjects to mark themselves. The estimate of the unknown population size is based on the assumption of a closed population and a simple Markov model in which the rates of marking, capture, and recapture are assumed to be equal. Using the one step transition probability matrix of their model, we illustrate how to go from an embedded discrete time Markov process to a continuous time Markov process assuming exponentially distributed holding times. We also compute the transition probabilities after time t for the continuous time case and compare the limiting behavior of the continuous and discrete time processes. Finally, we generalize their model by relaxing the assumption of equal per capita rates for marking, capture, and recapture. Other questions about how their results change when using a continuous time Markov process are examined.
威利托等人[E.P. 威利托、W.J. 尤恩斯、M.A. 马伦,《马尔可夫重捕种群估计:一种改进诱捕实验解释的工具》,《生态学》75 (1994) 1109]提出了一个四状态离散时间马尔可夫过程,该过程将标记重捕实验的结构描述为一种种群估计方法。他们主要为封闭昆虫种群的估计提出了这种方法。他们的方法通过允许个体自我标记,从单个诱捕观察中提供了一个标记重捕估计。未知种群大小的估计基于封闭种群的假设以及一个简单的马尔可夫模型,在该模型中,标记、捕获和重捕的速率被假定为相等。利用他们模型中的一步转移概率矩阵,我们说明了在假设持有时间呈指数分布的情况下,如何从一个嵌入的离散时间马尔可夫过程转换为连续时间马尔可夫过程。我们还计算了连续时间情况下时间t之后的转移概率,并比较了连续时间和离散时间过程的极限行为。最后,我们通过放宽标记、捕获和重捕的人均速率相等的假设来推广他们的模型。还研究了在使用连续时间马尔可夫过程时他们的结果如何变化的其他问题。