Suppr超能文献

变性条件下蛋白质动力学的单分子荧光共振能量转移研究

Single-molecule Forster resonance energy transfer study of protein dynamics under denaturing conditions.

作者信息

Kuzmenkina Elza V, Heyes Colin D, Nienhaus G Ulrich

机构信息

Department of Biophysics, University of Ulm, Albert Einstein Allee 11, 89081 Ulm, Germany.

出版信息

Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15471-6. doi: 10.1073/pnas.0507728102. Epub 2005 Oct 12.

Abstract

Proteins are highly complex systems, exhibiting a substantial degree of structural variability in their folded state. In the presence of denaturants, the heterogeneity is greatly enhanced, and fluctuations among vast numbers of folded and unfolded conformations occur via many different pathways. Here, we have studied the structure and dynamics of the small enzyme ribonuclease HI (RNase H) in the presence of the chemical denaturant guanidinium chloride (GdmCl) using single-molecule fluorescence microscopy, with a particular focus on the characterization of the unfolded-state ensemble. A dye pair was specifically attached to the enzyme to measure structural changes through Förster resonance energy transfer (FRET). Enzyme immobilization on star-polymer surfaces that were specially developed for negligible interaction with folded and unfolded proteins enabled us to monitor conformational changes of individual proteins for several hundred seconds. FRET efficiency histograms were calculated from confocal scan images. They showed an expansion of the unfolded proteins with increasing GdmCl concentration. Cross-correlation analysis of donor and acceptor fluorescence intensity time traces from single molecules revealed reconfiguration of the polypeptide chain on a timescale of approximately equal to 20 micros at 1.7 M GdmCl. Slow conformational dynamics gave rise to characteristic, stepwise FRET efficiency changes. Transitions between folded and unfolded enzyme molecules occurred on the 100-s timescale, in excellent agreement with bulk denaturation experiments. Transitions between unfolded conformations were more frequent, with characteristic times of approximately equal to 2 s. These data were analyzed to obtain information on the free energy landscape of RNase H in the presence of chemical denaturants.

摘要

蛋白质是高度复杂的系统,在其折叠状态下表现出相当程度的结构变异性。在变性剂存在的情况下,这种异质性会大大增强,大量折叠和未折叠构象之间的波动会通过许多不同的途径发生。在这里,我们使用单分子荧光显微镜研究了在化学变性剂氯化胍(GdmCl)存在下小酶核糖核酸酶HI(RNase H)的结构和动力学,特别关注未折叠状态集合的表征。将一对染料特异性连接到酶上,通过Förster共振能量转移(FRET)测量结构变化。将酶固定在专门开发的与折叠和未折叠蛋白质相互作用可忽略不计的星形聚合物表面上,使我们能够监测单个蛋白质数百秒的构象变化。从共聚焦扫描图像计算FRET效率直方图。结果表明,随着GdmCl浓度的增加,未折叠蛋白质发生了膨胀。对单分子供体和受体荧光强度时间轨迹的互相关分析表明,在1.7 M GdmCl时,多肽链在大约20微秒的时间尺度上发生了重新配置。缓慢的构象动力学导致了特征性的、逐步的FRET效率变化。折叠和未折叠酶分子之间的转变发生在100秒的时间尺度上,与整体变性实验结果非常吻合。未折叠构象之间的转变更为频繁,特征时间约为2秒。对这些数据进行了分析,以获得在化学变性剂存在下RNase H自由能景观的信息。

相似文献

1
Single-molecule Forster resonance energy transfer study of protein dynamics under denaturing conditions.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15471-6. doi: 10.1073/pnas.0507728102. Epub 2005 Oct 12.
2
Exploring protein structure and dynamics under denaturing conditions by single-molecule FRET analysis.
Macromol Biosci. 2006 Nov 9;6(11):907-22. doi: 10.1002/mabi.200600158.
3
Single-molecule FRET study of denaturant induced unfolding of RNase H.
J Mol Biol. 2006 Mar 17;357(1):313-24. doi: 10.1016/j.jmb.2005.12.061. Epub 2006 Jan 9.
4
Evidence of a folding intermediate in RNase H from single-molecule FRET experiments.
Chemphyschem. 2011 Feb 25;12(3):627-33. doi: 10.1002/cphc.201000693. Epub 2010 Nov 9.
5
Fast Folding Dynamics of an Intermediate State in RNase H Measured by Single-Molecule FRET.
J Phys Chem B. 2016 Feb 4;120(4):641-9. doi: 10.1021/acs.jpcb.5b09336. Epub 2016 Jan 21.
6
Three-Color Single-Molecule FRET and Fluorescence Lifetime Analysis of Fast Protein Folding.
J Phys Chem B. 2018 Dec 13;122(49):11702-11720. doi: 10.1021/acs.jpcb.8b07768. Epub 2018 Oct 10.
7
Single-molecule fluorescence studies of protein folding.
Methods Mol Biol. 2009;490:311-37. doi: 10.1007/978-1-59745-367-7_13.
8
Coulomb forces control the density of the collapsed unfolded state of barstar.
J Mol Biol. 2008 Feb 15;376(2):597-605. doi: 10.1016/j.jmb.2007.11.083. Epub 2007 Dec 4.
9
Conformations of a Metastable SH3 Domain Characterized by smFRET and an Excluded-Volume Polymer Model.
Biophys J. 2016 Apr 12;110(7):1510-1522. doi: 10.1016/j.bpj.2016.02.033.
10
Consistent View of Polypeptide Chain Expansion in Chemical Denaturants from Multiple Experimental Methods.
J Am Chem Soc. 2016 Sep 14;138(36):11714-26. doi: 10.1021/jacs.6b05917. Epub 2016 Sep 1.

引用本文的文献

1
Real-time single-molecule observation of chaperone-assisted protein folding.
Sci Adv. 2022 Dec 14;8(50):eadd0922. doi: 10.1126/sciadv.add0922.
2
NMR Provides Unique Insight into the Functional Dynamics and Interactions of Intrinsically Disordered Proteins.
Chem Rev. 2022 May 25;122(10):9331-9356. doi: 10.1021/acs.chemrev.1c01023. Epub 2022 Apr 21.
3
Transient local secondary structure in the intrinsically disordered C-term of the Albino3 insertase.
Biophys J. 2021 Nov 16;120(22):4992-5004. doi: 10.1016/j.bpj.2021.10.013. Epub 2021 Oct 16.
4
Structural Ensemble of the Insulin Monomer.
Biochemistry. 2021 Oct 26;60(42):3125-3136. doi: 10.1021/acs.biochem.1c00583. Epub 2021 Oct 12.
6
Osmolyte-Induced Folding and Stability of Proteins: Concepts and Characterization.
Iran J Pharm Res. 2019 Fall;18(Suppl1):13-30. doi: 10.22037/ijpr.2020.112621.13857.
7
Mapping Multiple Distances in a Multidomain Protein for the Identification of Folding Intermediates.
Biophys J. 2020 Feb 4;118(3):688-697. doi: 10.1016/j.bpj.2019.12.006. Epub 2019 Dec 18.
8
Diverse Folding Pathways of HIV-1 Protease Monomer on a Rugged Energy Landscape.
Biophys J. 2019 Oct 15;117(8):1456-1466. doi: 10.1016/j.bpj.2019.09.015. Epub 2019 Sep 18.
9
Single Molecule FRET: A Powerful Tool to Study Intrinsically Disordered Proteins.
Biomolecules. 2018 Nov 8;8(4):140. doi: 10.3390/biom8040140.

本文引用的文献

1
Carbocyanine dyes as efficient reversible single-molecule optical switch.
J Am Chem Soc. 2005 Mar 23;127(11):3801-6. doi: 10.1021/ja044686x.
2
The kinetics of conformational fluctuations in an unfolded protein measured by fluorescence methods.
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2385-9. doi: 10.1073/pnas.0500127102. Epub 2005 Feb 8.
3
Two-state folding observed in individual protein molecules.
J Am Chem Soc. 2004 Nov 17;126(45):14686-7. doi: 10.1021/ja046209k.
4
Reassessing random-coil statistics in unfolded proteins.
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12497-502. doi: 10.1073/pnas.0404236101. Epub 2004 Aug 16.
5
Biofunctionalized polymer surfaces exhibiting minimal interaction towards immobilized proteins.
Chemphyschem. 2004 Apr 19;5(4):552-5. doi: 10.1002/cphc.200400024.
7
The fast protein folding problem.
Annu Rev Phys Chem. 1999;50:485-516. doi: 10.1146/annurev.physchem.50.1.485.
8
Steric restrictions in protein folding: an alpha-helix cannot be followed by a contiguous beta-strand.
Protein Sci. 2004 Mar;13(3):633-9. doi: 10.1110/ps.03503304. Epub 2004 Feb 6.
9
Fast protein folding kinetics.
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12678-82. doi: 10.1073/pnas.1735417100. Epub 2003 Oct 20.
10
Watching proteins fold one molecule at a time.
Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3197-202. doi: 10.1073/pnas.2628068100. Epub 2003 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验