Suppr超能文献

真核生物翻译起始过程中核糖体AUG选择之前GTP水解的调控。

Regulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation.

作者信息

Majumdar Romit, Maitra Umadas

机构信息

Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Jack and Pearl Resnick Campus, Bronx, NY, USA.

出版信息

EMBO J. 2005 Nov 2;24(21):3737-46. doi: 10.1038/sj.emboj.7600844. Epub 2005 Oct 13.

Abstract

Genetic studies in yeast have shown that the translation initiation factor eIF5 plays an important role in the selection of the AUG start codon. In order to ensure translation fidelity, the hydrolysis of GTP bound to the 40S preinitiation complex (40S.Met-tRNA(i).eIF2.GTP), promoted by eIF5, must occur only when the complex has selected the AUG start codon. However, the mechanism that prevents the eIF5-promoted GTP hydrolysis, prior to AUG selection by the ribosomal machinery, is not known. In this work, we show that the presence of initiation factors eIF1, eIF1A and eIF3 in the 40S preinitiation complex (40S.eIF1.eIF1A.eIF3.Met-tRNA(i).eIF2.GTP) and the subsequent binding of the preinitiation complex to eIF4F bound at the 5'-cap structure of mRNA are necessary for preventing eIF5-promoted hydrolysis of GTP in the 40S preinitiation complex. This block in GTP hydrolysis is released upon AUG selection by the 40S preinitiation complex. These results, taken together, demonstrate the biochemical requirements for regulation of GTP hydrolysis and its coupling to the AUG selection process during translation initiation.

摘要

酵母中的遗传学研究表明,翻译起始因子eIF5在AUG起始密码子的选择中起重要作用。为确保翻译保真度,由eIF5促进的与40S起始前复合体(40S.Met-tRNA(i).eIF2.GTP)结合的GTP水解,必须仅在该复合体选择了AUG起始密码子后才发生。然而,在核糖体机制选择AUG之前,阻止eIF5促进的GTP水解的机制尚不清楚。在这项研究中,我们表明40S起始前复合体(40S.eIF1.eIF1A.eIF3.Met-tRNA(i).eIF2.GTP)中起始因子eIF1、eIF1A和eIF3的存在,以及随后该起始前复合体与结合在mRNA 5'-帽结构上的eIF4F的结合,对于防止40S起始前复合体中eIF5促进的GTP水解是必要的。在40S起始前复合体选择AUG后,这种GTP水解的阻滞被解除。综上所述,这些结果证明了在翻译起始过程中调节GTP水解及其与AUG选择过程偶联的生化要求。

相似文献

1
Regulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation.
EMBO J. 2005 Nov 2;24(21):3737-46. doi: 10.1038/sj.emboj.7600844. Epub 2005 Oct 13.
3
The scanning mechanism of eukaryotic translation initiation.
Annu Rev Biochem. 2014;83:779-812. doi: 10.1146/annurev-biochem-060713-035802. Epub 2014 Jan 29.

引用本文的文献

1
Translational regulation of cell invasion through extracellular matrix-an emerging role for ribosomes.
F1000Res. 2023 Nov 29;12:1528. doi: 10.12688/f1000research.143519.1. eCollection 2023.
2
Signaling plasticity in the integrated stress response.
Front Cell Dev Biol. 2023 Dec 7;11:1271141. doi: 10.3389/fcell.2023.1271141. eCollection 2023.
3
Conformational rearrangements upon start codon recognition in human 48S translation initiation complex.
Nucleic Acids Res. 2022 May 20;50(9):5282-5298. doi: 10.1093/nar/gkac283.
4
Established and Emerging Regulatory Roles of Eukaryotic Translation Initiation Factor 5B (eIF5B).
Front Genet. 2021 Aug 27;12:737433. doi: 10.3389/fgene.2021.737433. eCollection 2021.
5
Dissection of a rice OsMac1 mRNA 5' UTR to uncover regulatory elements that are responsible for its efficient translation.
PLoS One. 2021 Jul 9;16(7):e0253488. doi: 10.1371/journal.pone.0253488. eCollection 2021.
6
Translational control of coronaviruses.
Nucleic Acids Res. 2020 Dec 16;48(22):12502-12522. doi: 10.1093/nar/gkaa1116.
7
Structural basis for the inhibition of translation through eIF2α phosphorylation.
Nat Commun. 2019 Jun 14;10(1):2640. doi: 10.1038/s41467-019-10606-1.
8
Toward a Kinetic Understanding of Eukaryotic Translation.
Cold Spring Harb Perspect Biol. 2019 Feb 1;11(2):a032706. doi: 10.1101/cshperspect.a032706.
9
Protein Synthesis Initiation in Eukaryotic Cells.
Cold Spring Harb Perspect Biol. 2018 Dec 3;10(12):a033092. doi: 10.1101/cshperspect.a033092.
10
Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease.
Cell Mol Life Sci. 2017 Jan;74(2):183-212. doi: 10.1007/s00018-016-2286-y. Epub 2016 Jun 3.

本文引用的文献

3
The molecular mechanics of eukaryotic translation.
Annu Rev Biochem. 2004;73:657-704. doi: 10.1146/annurev.biochem.73.030403.080419.
4
Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E.
Cell. 2003 Dec 12;115(6):739-50. doi: 10.1016/s0092-8674(03)00975-9.
7
Gene-specific regulation by general translation factors.
Cell. 2002 Feb 22;108(4):545-56. doi: 10.1016/s0092-8674(02)00642-6.
8
Functional significance and mechanism of eIF5-promoted GTP hydrolysis in eukaryotic translation initiation.
Prog Nucleic Acid Res Mol Biol. 2001;70:207-31. doi: 10.1016/s0079-6603(01)70018-9.
10
Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein.
J Biol Chem. 2001 Mar 2;276(9):6720-6. doi: 10.1074/jbc.M008863200. Epub 2000 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验