Pasterkamp R Jeroen, Dai Hai-ning, Terman Jonathan R, Wahlin Karl J, Kim Byung, Bregman Barbara S, Popovich Phillip G, Kolodkin Alex L
Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Mol Cell Neurosci. 2006 Jan;31(1):52-69. doi: 10.1016/j.mcn.2005.09.001. Epub 2005 Oct 17.
MICALs comprise of a family of phylogenetically conserved, multidomain cytosolic flavoprotein monooxygenases. Drosophila (D-)MICAL binds the neuronal Sema1a receptor PlexA, and D-MICAL-PlexA interactions are required in vivo for Sema1a-induced axon repulsion. The biological functions of vertebrate MICAL proteins, however, remain unknown. Here, we describe three rodent MICAL genes and analyze their expression in the intact rat nervous system and in two models of spinal cord injury. MICAL-1, -2, and -3 expression patterns in the embryonic, postnatal, and adult nervous system support the idea that MICALs play roles in neural development and plasticity. In addition, MICAL expression is elevated in oligodendrocytes and in meningeal fibroblasts at sites of spinal cord injury but is unchanged in lesioned corticospinal tract neurons. Furthermore, we find that the selective monooxygenase inhibitor EGCG attenuates the repulsive effects of Sema3A and Sema3F in vitro, but not those of several other repulsive cues and substrates. These results implicate MICALs in neuronal regeneration and support the possibility of employing EGCG to attenuate Sema3-mediated axon repulsion in the injured spinal cord.
MICALs由一组系统发育保守的多结构域胞质黄素蛋白单加氧酶组成。果蝇(D-)MICAL与神经元Sema1a受体PlexA结合,并且在体内,Sema1a诱导的轴突排斥需要D-MICAL-PlexA相互作用。然而,脊椎动物MICAL蛋白的生物学功能仍然未知。在这里,我们描述了三个啮齿动物MICAL基因,并分析了它们在完整大鼠神经系统和两种脊髓损伤模型中的表达。MICAL-1、-2和-3在胚胎、出生后和成年神经系统中的表达模式支持了MICALs在神经发育和可塑性中发挥作用的观点。此外,脊髓损伤部位的少突胶质细胞和脑膜成纤维细胞中MICAL表达升高,但损伤的皮质脊髓束神经元中MICAL表达没有变化。此外,我们发现选择性单加氧酶抑制剂表没食子儿茶素没食子酸酯(EGCG)在体外可减弱Sema3A和Sema3F的排斥作用,但对其他几种排斥信号和底物的作用没有影响。这些结果表明MICALs参与神经元再生,并支持使用EGCG减弱损伤脊髓中Sema3介导的轴突排斥的可能性。