Sakai Akihiro, Kita Makoto, Katsuragi Tohoru, Tani Yoshiki
Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma City, Nara 630-0101, Japan.
J Biosci Bioeng. 2002;93(3):334-7. doi: 10.1263/jbb.93.334.
The possible involvement of serC in vitamin B6 (B6) biosynthesis in Bacillus subtilis was investigated and compared with that in Escherichia coli. The genes of E. coli and B. subtilis were disrupted with pBEN66 and pMutin1-derived integration vectors, respectively. Nutrient requirement analyses showed that the serC-disrupted E. coli mutant required pyridoxine (PN) and L-serine, and lacked the ability to synthesize B6. Glycolaldehyde (GA), a confirmed precursor of B6, could replace PN and support the growth of the disruptant. However, the serC-disrupted E. coli mutant grown in a minimal medium supplemented with L-serine and GA synthesized B6 at a level less than 20% of that synthesized by the wild type. In contrast to E. coli, the serC-disrupted B. subtilis mutant required L-serine or glycine for growth, but did not require PN. The serC disruptant retained its ability for B6 biosynthesis and produced almost the same amount of PN as the wild type. GA had no effect on the growth and level of B6 biosynthesis of both the wild type and the serC disruptant. These results lead to the conclusion that serC is directly involved in B6 biosynthesis in E. coli, but not in B. subtilis.
研究了枯草芽孢杆菌中serC基因在维生素B6(B6)生物合成中的可能作用,并与大肠杆菌中的情况进行了比较。分别用pBEN66和pMutin1衍生的整合载体破坏了大肠杆菌和枯草芽孢杆菌的基因。营养需求分析表明,serC基因被破坏的大肠杆菌突变体需要吡哆醇(PN)和L-丝氨酸,并且缺乏合成B6的能力。已证实的B6前体乙醇醛(GA)可以替代PN并支持突变体的生长。然而,在补充了L-丝氨酸和GA的基本培养基中生长的serC基因被破坏的大肠杆菌突变体合成的B6水平不到野生型合成量的20%。与大肠杆菌不同,serC基因被破坏的枯草芽孢杆菌突变体生长需要L-丝氨酸或甘氨酸,但不需要PN。serC基因破坏的突变体保留了其B6生物合成能力,产生的PN量与野生型几乎相同。GA对野生型和serC基因破坏的突变体的生长和B6生物合成水平均无影响。这些结果得出结论:serC基因直接参与大肠杆菌中B6的生物合成,但不参与枯草芽孢杆菌中B6的生物合成。