Suppr超能文献

Degradation of carbendazim and 2,4-dichlorophenoxyacetic acid by immobilized consortium on loofa sponge.

作者信息

Pattanasupong Anchana, Nagase Hiroyasu, Sugimoto Eiko, Hori Yasuhisa, Hirata Kazumasa, Tani Katsuji, Nasu Masao, Miyamoto Kazuhisa

机构信息

Environmental Biotechnology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan.

出版信息

J Biosci Bioeng. 2004;98(1):28-33. doi: 10.1016/S1389-1723(04)70238-8.

Abstract

A fungicide, carbendazim (methyl-2-benzimidazole carbamate; MBC), and a herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), could be simultaneously degraded by a microbial consortium obtained from several soil samples in Japanese paddy fields with enrichment continuous culture. The degradation ability of the consortium was increased by immobilization on loofa (Luffa cylindrica) sponge in comparison with that of free-living consortium. MBC and 2,4-D were completely degraded within 5.5 d and 1.5 d, respectively. The toxicity of these pesticides in culture medium to Daphnia magna was reduced by treatment with the consortium corresponding to their degradation. The degradation ability of the immobilized consortium at pHs in the range from 6 to 9, at temperatures from 15 degrees C to 37 degrees C, and at low NH(4)(+)-N concentrations (1-10 mg/l) was not very different from that under the basal condition (pH 7, 30 degrees C, 424 mg/l NH(4)(+)-N and 472 mg/l PO(4)(3)(-)-P). At low pHs 4 and 5, the ability was significantly lower than that of the basal condition. Moreover, incubation at low PO(4)(3)(-)-P concentrations (1-10 mg/l) caused a decrease in pH at which the degradation ability also became lower. However, the ability in this culture completely recovered when pH was adjusted to 7 or the phosphate concentration was increased to the basal level. Analysis by denaturing gradient gel electrophoresis (DGGE) showed the whole population of the consortium became faint at low pH or low phosphate concentrations but became distinct again as much as those under the basal conditions, indicating that the decrease in the degradation ability caused by low pH was due to that whole population of the consortium underwent serious damage but could survive and recover. These results suggest the immobilized consortium on loofa sponge is a promising material for bioremediation of polluted water with these pesticides in paddy fields.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验