Suppr超能文献

利用富含精油的植物材料固定化罗奇氏菌 L4 对偶氮氯苯的共代谢降解。

Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils.

机构信息

Department of Microbiology, Chulalongkorn University, Patumwan, Bangkok, Thailand.

出版信息

Appl Environ Microbiol. 2010 Jul;76(14):4684-90. doi: 10.1128/AEM.03036-09. Epub 2010 May 14.

Abstract

The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 muM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE.

摘要

通过添加诱导物(如枯茗醇、柠檬烯或枯茗醛)可以克服 Rhodococcus sp. L4 共代谢降解三氯乙烯(TCE)时酶活性丧失的限制。或者,可以将 Rhodococcus sp. L4 固定在含有这些诱导物的植物材料上。枯茗籽是最适合的固定化材料,固定化细胞可以耐受高达 68 μM 的 TCE 并持续降解 TCE。在没有 TCE 的情况下,在无机盐培养基中孵育可以使部分失活的固定化细胞重新激活。这些发现表明,将 Rhodococcus sp. L4 固定在富含精油的植物材料上是一种很有前途的方法,可用于有效共代谢降解 TCE。

相似文献

1
Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils.
Appl Environ Microbiol. 2010 Jul;76(14):4684-90. doi: 10.1128/AEM.03036-09. Epub 2010 May 14.
2
Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils.
Biodegradation. 2009 Apr;20(2):281-91. doi: 10.1007/s10532-008-9220-4. Epub 2008 Sep 23.
4
Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates.
Chemosphere. 2011 Jun;84(2):247-53. doi: 10.1016/j.chemosphere.2011.04.007. Epub 2011 Apr 30.
5
Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1.
Appl Environ Microbiol. 2004 May;70(5):2830-5. doi: 10.1128/AEM.70.5.2830-2835.2004.
6
Biotransformation of D-limonene to (+) trans-carveol by toluene-grown Rhodococcus opacus PWD4 cells.
Appl Environ Microbiol. 2001 Jun;67(6):2829-32. doi: 10.1128/AEM.67.6.2829-2832.2001.
7
Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE.
Arch Microbiol. 1990;154(4):410-3. doi: 10.1007/BF00276540.
8
Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene.
Appl Environ Microbiol. 1995 Aug;61(8):2936-42. doi: 10.1128/aem.61.8.2936-2942.1995.
9
Cometabolic degradation of TCE in enriched nitrifying batch systems.
J Hazard Mater. 2005 Oct 17;125(1-3):260-5. doi: 10.1016/j.jhazmat.2005.06.002.
10
Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276.
Microbiology (Reading). 1999 Jul;145 ( Pt 7):1721-1730. doi: 10.1099/13500872-145-7-1721.

引用本文的文献

1
Integrating the latest biological advances in the key steps of a food packaging life cycle.
Front Nutr. 2023 Jul 27;10:1223638. doi: 10.3389/fnut.2023.1223638. eCollection 2023.
2
Recent advances and trends of trichloroethylene biodegradation: A critical review.
Front Microbiol. 2022 Dec 22;13:1053169. doi: 10.3389/fmicb.2022.1053169. eCollection 2022.
3
Reuse of Immobilized PN3 for Long-Term Production of Both Extracellular and Cell-Bound Glycolipid Biosurfactants.
Front Bioeng Biotechnol. 2020 Jul 3;8:751. doi: 10.3389/fbioe.2020.00751. eCollection 2020.
4
Metagenomics-Based Discovery of Malachite Green-Degradation Gene Families and Enzymes From Mangrove Sediment.
Front Microbiol. 2018 Sep 11;9:2187. doi: 10.3389/fmicb.2018.02187. eCollection 2018.
5
Rhodococcus bacteria as a promising source of oils from olive mill wastes.
World J Microbiol Biotechnol. 2018 Jul 10;34(8):114. doi: 10.1007/s11274-018-2499-3.
6
Microbial degradation of chloroethenes: a review.
Environ Sci Pollut Res Int. 2017 May;24(15):13262-13283. doi: 10.1007/s11356-017-8867-y. Epub 2017 Apr 5.
8
Drotaverine hydrochloride degradation using cyst-like dormant cells of Rhodococcus ruber.
Curr Microbiol. 2015 Mar;70(3):307-14. doi: 10.1007/s00284-014-0718-1. Epub 2014 Nov 2.
9
Biodegradation of trichloroethylene by an endophyte of hybrid poplar.
Appl Environ Microbiol. 2012 May;78(9):3504-7. doi: 10.1128/AEM.06852-11. Epub 2012 Feb 24.

本文引用的文献

1
Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils.
Biodegradation. 2009 Apr;20(2):281-91. doi: 10.1007/s10532-008-9220-4. Epub 2008 Sep 23.
2
Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.
J Hazard Mater. 2007 Sep 30;148(3):660-70. doi: 10.1016/j.jhazmat.2007.03.030. Epub 2007 Mar 14.
4
Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by rhodococcus species.
Appl Environ Microbiol. 1994 Feb;60(2):542-8. doi: 10.1128/aem.60.2.542-548.1994.
5
Attachment stimulates exopolysaccharide synthesis by a bacterium.
Appl Environ Microbiol. 1993 Oct;59(10):3280-6. doi: 10.1128/aem.59.10.3280-3286.1993.
6
Degradation of carbendazim and 2,4-dichlorophenoxyacetic acid by immobilized consortium on loofa sponge.
J Biosci Bioeng. 2004;98(1):28-33. doi: 10.1016/S1389-1723(04)70238-8.
7
Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products.
Bioresour Technol. 2006 Jan;97(1):32-8. doi: 10.1016/j.biortech.2005.02.031. Epub 2005 Apr 12.
8
Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects.
Appl Microbiol Biotechnol. 2005 Oct;68(6):794-801. doi: 10.1007/s00253-005-1944-z. Epub 2005 Oct 13.
9
Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure.
Appl Environ Microbiol. 2004 Dec;70(12):6951-6. doi: 10.1128/AEM.70.12.6951-6956.2004.
10
Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1.
Appl Environ Microbiol. 2004 May;70(5):2830-5. doi: 10.1128/AEM.70.5.2830-2835.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验