Suppr超能文献

K-ras4B和缺乏“第二信号”的异戊二烯化蛋白与细胞膜动态结合。

K-ras4B and prenylated proteins lacking "second signals" associate dynamically with cellular membranes.

作者信息

Silvius John R, Bhagatji Pinkesh, Leventis Rania, Terrone Donato

机构信息

Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada.

出版信息

Mol Biol Cell. 2006 Jan;17(1):192-202. doi: 10.1091/mbc.e05-05-0408. Epub 2005 Oct 19.

Abstract

We have used fluorescence microscopy and the technique of rapamycin-regulated protein heterodimerization to examine the dynamics of the subcellular localizations of fluorescent proteins fused to lipid-modified protein sequences and to wild-type and mutated forms of full-length K-ras4B. Singly prenylated or myristoylated fluorescent protein derivatives lacking a "second signal" to direct them to specific subcellular destinations, but incorporating a rapamycin-dependent heterodimerization module, rapidly translocate to mitochondria upon rapamycin addition to bind to a mitochondrial outer membrane protein incorporating a complementary heterodimerization module. Under the same conditions analogous constructs anchored to the plasma membrane by multiply lipid-modified sequences, or by a transmembrane helix, show very slow or no transfer to mitochondria, respectively. Interestingly, however, fluorescent protein constructs incorporating either full-length K-ras4B or its plasma membrane-targeting sequence alone undergo rapamycin-induced transfer from the plasma membrane to mitochondria on a time scale of minutes, demonstrating the rapidly reversible nature of K-ras4B binding to the plasma membrane. The dynamic nature of the plasma membrane targeting of K-ras4B could contribute to K-ras4B function by facilitating redistribution of the protein between subcellular compartments under particular conditions.

摘要

我们运用荧光显微镜以及雷帕霉素调节的蛋白质异二聚化技术,来检测与脂质修饰蛋白序列融合的荧光蛋白,以及全长K-ras4B的野生型和突变型的亚细胞定位动态变化。单萜化或肉豆蔻酰化的荧光蛋白衍生物缺乏将它们导向特定亚细胞目的地的“第二信号”,但包含雷帕霉素依赖性异二聚化模块,在添加雷帕霉素后会迅速转运至线粒体,以结合包含互补异二聚化模块的线粒体外膜蛋白。在相同条件下,通过多个脂质修饰序列或跨膜螺旋锚定在质膜上的类似构建体,分别显示出非常缓慢或没有向线粒体的转移。然而,有趣的是,包含全长K-ras4B或其单独的质膜靶向序列的荧光蛋白构建体,在几分钟的时间尺度上会经历雷帕霉素诱导的从质膜到线粒体的转移,这表明K-ras4B与质膜结合具有快速可逆的性质。K-ras4B质膜靶向的动态性质可能通过在特定条件下促进蛋白质在亚细胞区室之间的重新分布,从而有助于K-ras4B发挥功能。

相似文献

1
K-ras4B and prenylated proteins lacking "second signals" associate dynamically with cellular membranes.
Mol Biol Cell. 2006 Jan;17(1):192-202. doi: 10.1091/mbc.e05-05-0408. Epub 2005 Oct 19.
2
Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.
Proc Natl Acad Sci U S A. 2015 May 26;112(21):6625-30. doi: 10.1073/pnas.1419895112. Epub 2015 May 4.
3
Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region.
J Biol Chem. 2015 Apr 10;290(15):9465-77. doi: 10.1074/jbc.M114.620724. Epub 2015 Feb 24.
5
Lipid-binding characteristics of the polybasic carboxy-terminal sequence of K-ras4B.
Biochemistry. 1998 May 19;37(20):7640-8. doi: 10.1021/bi973077h.
6
Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane.
Biophys J. 2010 Nov 17;99(10):3327-35. doi: 10.1016/j.bpj.2010.10.001.
7
Regulation of K-Ras4B Membrane Binding by Calmodulin.
Biophys J. 2016 Jul 12;111(1):113-22. doi: 10.1016/j.bpj.2016.05.042.
8
Membrane-mediated induction and sorting of K-Ras microdomain signaling platforms.
J Am Chem Soc. 2011 Feb 2;133(4):880-7. doi: 10.1021/ja107532q. Epub 2010 Dec 9.

引用本文的文献

1
IL-37d suppresses Rheb-mTORC1 axis independently of TCS2 to alleviate alcoholic liver disease.
Commun Biol. 2024 Jun 21;7(1):756. doi: 10.1038/s42003-024-06427-8.
3
Tumor cells fail to present MHC-II-restricted epitopes derived from oncogenes to CD4+ T cells.
JCI Insight. 2023 Jan 24;8(2):e165570. doi: 10.1172/jci.insight.165570.
5
MMP-9 Signaling Pathways That Engage Rho GTPases in Brain Plasticity.
Cells. 2021 Jan 15;10(1):166. doi: 10.3390/cells10010166.
6
Mapping the electrostatic profiles of cellular membranes.
Mol Biol Cell. 2021 Feb 1;32(3):301-310. doi: 10.1091/mbc.E19-08-0436. Epub 2020 Dec 2.
7
Post-translational modification of KRAS: potential targets for cancer therapy.
Acta Pharmacol Sin. 2021 Aug;42(8):1201-1211. doi: 10.1038/s41401-020-00542-y. Epub 2020 Oct 21.
8
Coordination of Rheb lysosomal membrane interactions with mTORC1 activation.
F1000Res. 2020 May 27;9. doi: 10.12688/f1000research.22367.1. eCollection 2020.
10
Weak membrane interactions allow Rheb to activate mTORC1 signaling without major lysosome enrichment.
Mol Biol Cell. 2019 Oct 15;30(22):2750-2760. doi: 10.1091/mbc.E19-03-0146. Epub 2019 Sep 18.

本文引用的文献

1
Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin.
J Cell Biol. 2005 Aug 1;170(3):429-41. doi: 10.1083/jcb.200409157. Epub 2005 Jul 25.
2
Compartmentalized signalling of Ras.
Biochem Soc Trans. 2005 Aug;33(Pt 4):657-61. doi: 10.1042/BST0330657.
3
Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway.
J Cell Biol. 2005 Jul 18;170(2):261-72. doi: 10.1083/jcb.200502063.
4
Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling.
Mol Cell Biol. 2005 Aug;25(15):6722-33. doi: 10.1128/MCB.25.15.6722-6733.2005.
6
An acylation cycle regulates localization and activity of palmitoylated Ras isoforms.
Science. 2005 Mar 18;307(5716):1746-52. doi: 10.1126/science.1105654. Epub 2005 Feb 10.
7
Imaging activation of two Ras isoforms simultaneously in a single cell.
Chembiochem. 2005 Jan;6(1):78-85. doi: 10.1002/cbic.200400280.
9
Identification of a novel domain of Ras and Rap1 that directs their differential subcellular localizations.
J Biol Chem. 2004 May 21;279(21):22664-73. doi: 10.1074/jbc.M314169200. Epub 2004 Mar 18.
10
An improved cyan fluorescent protein variant useful for FRET.
Nat Biotechnol. 2004 Apr;22(4):445-9. doi: 10.1038/nbt945. Epub 2004 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验