Suppr超能文献

多种细胞蛋白调节 K-ras 与质膜结合的动力学。

Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane.

机构信息

Department of Biochemistry, McGill University, Montréal, Québec, Canada.

出版信息

Biophys J. 2010 Nov 17;99(10):3327-35. doi: 10.1016/j.bpj.2010.10.001.

Abstract

Although specific proteins have been identified that regulate the membrane association and facilitate intracellular transport of prenylated Rho- and Rab-family proteins, it is not known whether cellular proteins fulfill similar roles for other prenylated species, such as Ras-family proteins. We used a previously described method to evaluate how several cellular proteins, previously identified as potential binding partners (but not effectors) of K-ras4B, influence the dynamics of K-ras association with the plasma membrane. Overexpression of either PDEδ or PRA1 enhances, whereas knockdown of either protein reduces, the rate of dissociation of K-ras from the plasma membrane. Inhibition of calmodulin likewise reduces the rate of K-ras dissociation from the plasma membrane, in this case in a manner specific for the activated form of K-ras. By contrast, galectin-3 specifically reduces the rate of plasma membrane dissociation of activated K-ras, an effect that is blocked by the K-ras antagonist farnesylthiosalicylic acid (salirasib). Multiple cellular proteins thus control the dynamics of membrane association and intercompartmental movement of K-ras to an important degree even under basal cellular conditions.

摘要

虽然已经鉴定出一些特定的蛋白质,它们可以调节被异戊二烯基化的 Rho 和 Rab 家族蛋白的膜结合并促进其细胞内运输,但尚不清楚细胞蛋白是否也可以为其他被异戊二烯基化的物质(如 Ras 家族蛋白)发挥类似的作用。我们使用先前描述的方法来评估几种细胞蛋白(先前被鉴定为 K-ras4B 的潜在结合伴侣(而非效应物))如何影响 K-ras 与质膜结合的动态变化。PDEδ 或 PRA1 的过表达会增强 K-ras 与质膜的解离速率,而这两种蛋白的敲低则会降低 K-ras 与质膜的解离速率。钙调蛋白的抑制同样会降低 K-ras 与质膜的解离速率,在这种情况下,这种作用是针对激活形式的 K-ras 的。相比之下,半乳糖凝集素-3 特异性地降低了激活的 K-ras 从质膜解离的速率,而这种作用被 K-ras 拮抗剂法尼基硫代水杨酸(法尼基硫代水杨酸)阻断。因此,即使在基础细胞条件下,多种细胞蛋白也可以在很大程度上控制 K-ras 与质膜的结合和细胞区间运动的动力学。

相似文献

1
Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane.
Biophys J. 2010 Nov 17;99(10):3327-35. doi: 10.1016/j.bpj.2010.10.001.
2
Galectin-3 promotes chronic activation of K-Ras and differentiation block in malignant thyroid carcinomas.
Mol Cancer Ther. 2010 Aug;9(8):2208-19. doi: 10.1158/1535-7163.MCT-10-0262. Epub 2010 Aug 3.
3
PDEδ Binding to Ras Isoforms Provides a Route to Proper Membrane Localization.
J Phys Chem B. 2017 Jun 22;121(24):5917-5927. doi: 10.1021/acs.jpcb.7b03035. Epub 2017 Jun 7.
4
Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region.
J Biol Chem. 2015 Apr 10;290(15):9465-77. doi: 10.1074/jbc.M114.620724. Epub 2015 Feb 24.
5
Prenylated Rab acceptor protein is a receptor for prenylated small GTPases.
J Biol Chem. 2001 Jul 27;276(30):28219-25. doi: 10.1074/jbc.M101763200. Epub 2001 May 2.
7
Regulation of K-Ras4B Membrane Binding by Calmodulin.
Biophys J. 2016 Jul 12;111(1):113-22. doi: 10.1016/j.bpj.2016.05.042.
8
Targeting of K-Ras 4B by S-trans,trans-farnesyl thiosalicylic acid.
Biochim Biophys Acta. 1999 Dec 9;1452(3):228-42. doi: 10.1016/s0167-4889(99)00144-5.
9
K-ras4B and prenylated proteins lacking "second signals" associate dynamically with cellular membranes.
Mol Biol Cell. 2006 Jan;17(1):192-202. doi: 10.1091/mbc.e05-05-0408. Epub 2005 Oct 19.
10
Arl2-Mediated Allosteric Release of Farnesylated KRas4B from Shuttling Factor PDEδ.
J Phys Chem B. 2018 Aug 2;122(30):7503-7513. doi: 10.1021/acs.jpcb.8b04347. Epub 2018 Jul 18.

引用本文的文献

2
SmgGDS: An Emerging Master Regulator of Prenylation and Trafficking by Small GTPases in the Ras and Rho Families.
Front Mol Biosci. 2021 Jun 16;8:685135. doi: 10.3389/fmolb.2021.685135. eCollection 2021.
3
Macropinocytosis requires Gal-3 in a subset of patient-derived glioblastoma stem cells.
Commun Biol. 2021 Jun 10;4(1):718. doi: 10.1038/s42003-021-02258-z.
6
Splice switching an oncogenic ratio of SmgGDS isoforms as a strategy to diminish malignancy.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3627-3636. doi: 10.1073/pnas.1914153117. Epub 2020 Feb 4.
8
KRAS Prenylation Is Required for Bivalent Binding with Calmodulin in a Nucleotide-Independent Manner.
Biophys J. 2019 Mar 19;116(6):1049-1063. doi: 10.1016/j.bpj.2019.02.004. Epub 2019 Feb 15.
10
Concepts and advances in cancer therapeutic vulnerabilities in RAS membrane targeting.
Semin Cancer Biol. 2019 Feb;54:121-130. doi: 10.1016/j.semcancer.2017.11.021. Epub 2017 Dec 2.

本文引用的文献

1
Mathematical modeling of K-Ras nanocluster formation on the plasma membrane.
Biophys J. 2010 Jul 21;99(2):534-43. doi: 10.1016/j.bpj.2010.04.055.
2
New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes.
J Biol Chem. 2009 Aug 28;284(35):23860-71. doi: 10.1074/jbc.M109.031815. Epub 2009 Jul 6.
3
K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3.
Cancer Res. 2008 Aug 15;68(16):6608-16. doi: 10.1158/0008-5472.CAN-08-1117.
5
Identification of essential interacting elements in K-Ras/calmodulin binding and its role in K-Ras localization.
J Biol Chem. 2008 Apr 18;283(16):10621-31. doi: 10.1074/jbc.M706238200. Epub 2008 Jan 8.
6
Plasma membrane nanoswitches generate high-fidelity Ras signal transduction.
Nat Cell Biol. 2007 Aug;9(8):905-14. doi: 10.1038/ncb1615. Epub 2007 Jul 8.
7
H-Ras does not need COP I- or COP II-dependent vesicular transport to reach the plasma membrane.
J Biol Chem. 2007 Aug 31;282(35):25760-8. doi: 10.1074/jbc.M700437200. Epub 2007 Jun 22.
9
Growth factor-dependent AKT activation and cell migration requires the function of c-K(B)-Ras versus other cellular ras isoforms.
J Biol Chem. 2006 Oct 6;281(40):29730-8. doi: 10.1074/jbc.M600668200. Epub 2006 Aug 14.
10
Nonconventional trafficking of Ras associated with Ras signal organization.
Traffic. 2006 Sep;7(9):119-26. doi: 10.1111/j.1600-0854.2006.00459.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验