Suppr超能文献

大肠杆菌中RpoS翻译的稳定期调控

Stationary-phase regulation of RpoS translation in Escherichia coli.

作者信息

Hirsch Matthew, Elliott Thomas

机构信息

Department of Microbiology, Immunology, and Cell Biology, West Virginia University Health Science Center, Morgantown, WV 26506, USA.

出版信息

J Bacteriol. 2005 Nov;187(21):7204-13. doi: 10.1128/JB.187.21.7204-7213.2005.

Abstract

In enteric bacteria, adaptation to a number of different stresses is mediated by the RpoS protein, one of several sigma factors that collectively allow a tailored transcriptional response to environmental cues. Stress stimuli including low temperature, osmotic shock, nutrient limitation, and growth to stationary phase (SP) all result in a substantial increase in RpoS abundance and activity. The mechanism of regulation depends on the specific signal but may occur at the level of transcription, translation, protein activity, or targeted proteolysis. In both Escherichia coli and Salmonella enterica, SP induction of RpoS in rich medium is >30 fold and includes effects on both transcription and translation. Recently, we found that SP control of rpoS transcription in S. enterica involves repression of the major rpoS promoter during exponential phase by the global transcription factor Fis. Working primarily with E. coli, we now show that 24 nucleotides of the rpoS ribosome-binding site (RBS) are necessary and sufficient for a large part of the increase in rpoS translation as cells grow to SP. Genetic evidence points to an essential role for the leader nucleotides just upstream of the Shine-Dalgarno sequence but is conflicted on the question of whether sequence or structure is important. SP regulation of rpoS is conserved between E. coli and S. enterica. When combined with an fis mutation to block transcriptional effects, replacement of the rpoS RBS sequence by the lacZ RBS eliminates nearly all SP induction of RpoS.

摘要

在肠道细菌中,对多种不同应激的适应是由RpoS蛋白介导的,RpoS蛋白是几种σ因子之一,这些σ因子共同作用使得细菌能够根据环境线索进行定制化的转录反应。包括低温、渗透压休克、营养限制以及生长至稳定期(SP)在内的应激刺激,都会导致RpoS丰度和活性大幅增加。调控机制取决于特定信号,但可能发生在转录、翻译、蛋白质活性或靶向蛋白水解水平。在大肠杆菌和肠炎沙门氏菌中,在丰富培养基中SP诱导RpoS的倍数大于30倍,且对转录和翻译均有影响。最近,我们发现肠炎沙门氏菌中rpoS转录的SP调控涉及全局转录因子Fis在指数生长期对主要rpoS启动子的抑制。现在,我们主要以大肠杆菌为研究对象,发现随着细胞生长至稳定期,rpoS核糖体结合位点(RBS)的24个核苷酸对于rpoS翻译的大部分增加是必要且充分的。遗传学证据表明,Shine-Dalgarno序列上游的前导核苷酸起着至关重要的作用,但在序列或结构是否重要这一问题上存在争议。rpoS的SP调控在大肠杆菌和肠炎沙门氏菌之间是保守的。当与fis突变结合以阻断转录效应时,用lacZ RBS替换rpoS RBS序列几乎消除了RpoS的所有SP诱导。

相似文献

1
Stationary-phase regulation of RpoS translation in Escherichia coli.
J Bacteriol. 2005 Nov;187(21):7204-13. doi: 10.1128/JB.187.21.7204-7213.2005.
2
Fis regulates transcriptional induction of RpoS in Salmonella enterica.
J Bacteriol. 2005 Mar;187(5):1568-80. doi: 10.1128/JB.187.5.1568-1580.2005.
5
RpoS-independent and growth phase-dependent expression of dcuSR operon of Escherichia coli.
Acta Microbiol Immunol Hung. 2009 Sep;56(3):211-27. doi: 10.1556/AMicr.56.2009.3.2.
9
Identification of RpoS (sigma(S))-regulated genes in Salmonella enterica serovar typhimurium.
J Bacteriol. 2000 Oct;182(20):5749-56. doi: 10.1128/JB.182.20.5749-5756.2000.

引用本文的文献

1
Control of a chemical chaperone by a universally conserved ATPase.
iScience. 2024 Jun 8;27(7):110215. doi: 10.1016/j.isci.2024.110215. eCollection 2024 Jul 19.
2
Cellular Self-Digestion and Persistence in Bacteria.
Microorganisms. 2021 Oct 31;9(11):2269. doi: 10.3390/microorganisms9112269.
4
Mechanism for coordinate regulation of by sRNA-sRNA interaction in .
RNA Biol. 2020 Feb;17(2):176-187. doi: 10.1080/15476286.2019.1672514. Epub 2019 Sep 29.
5
Trouble is coming: Signaling pathways that regulate general stress responses in bacteria.
J Biol Chem. 2019 Aug 2;294(31):11685-11700. doi: 10.1074/jbc.REV119.005593. Epub 2019 Jun 13.
7
YqjD is an inner membrane protein associated with stationary-phase ribosomes in Escherichia coli.
J Bacteriol. 2012 Aug;194(16):4178-83. doi: 10.1128/JB.00396-12. Epub 2012 Jun 1.
8
Genetic components of stringent response in Vibrio cholerae.
Indian J Med Res. 2011 Feb;133(2):212-7.
9
Transcriptome analysis of genes controlled by luxS/autoinducer-2 in Salmonella enterica serovar Typhimurium.
Foodborne Pathog Dis. 2010 Apr;7(4):399-410. doi: 10.1089/fpd.2009.0372.
10

本文引用的文献

2
Fis regulates transcriptional induction of RpoS in Salmonella enterica.
J Bacteriol. 2005 Mar;187(5):1568-80. doi: 10.1128/JB.187.5.1568-1580.2005.
4
Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA.
J Mol Biol. 2004 Dec 10;344(5):1211-23. doi: 10.1016/j.jmb.2004.10.006.
5
The small RNA regulators of Escherichia coli: roles and mechanisms*.
Annu Rev Microbiol. 2004;58:303-28. doi: 10.1146/annurev.micro.58.030603.123841.
7
Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15. doi: 10.1093/nar/gkg595.
8
Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm.
Mol Microbiol. 2003 May;48(4):855-61. doi: 10.1046/j.1365-2958.2003.03454.x.
9
Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase.
Microbiol Mol Biol Rev. 2002 Sep;66(3):373-95, table of contents. doi: 10.1128/MMBR.66.3.373-395.2002.
10
Role of ppGpp in rpoS stationary-phase regulation in Escherichia coli.
J Bacteriol. 2002 Sep;184(18):5077-87. doi: 10.1128/JB.184.18.5077-5087.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验