Suppr超能文献

詹氏甲烷球菌中的磷酸核糖-5-磷酸生物合成在没有磷酸戊糖途径的情况下发生。

Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway.

作者信息

Grochowski Laura L, Xu Huimin, White Robert H

机构信息

Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061.

出版信息

J Bacteriol. 2005 Nov;187(21):7382-9. doi: 10.1128/JB.187.21.7382-7389.2005.

Abstract

Recent work has raised a question as to the involvement of erythrose-4-phosphate, a product of the pentose phosphate pathway, in the metabolism of the methanogenic archaea (R. H. White, Biochemistry 43:7618-7627, 2004). To address the possible absence of erythrose-4-phosphate in Methanocaldococcus jannaschii, we have assayed cell extracts of this methanogen for the presence of this and other intermediates in the pentose phosphate pathway and have determined and compared the labeling patterns of sugar phosphates derived metabolically from [6,6-2H2]- and [U-13C]-labeled glucose-6-phosphate incubated with cell extracts. The results of this work have established the absence of pentose phosphate pathway intermediates erythrose-4-phosphate, xylose-5-phosphate, and sedoheptulose-7-phosphate in these cells and the presence of D-arabino-3-hexulose-6-phosphate, an intermediate in the ribulose monophosphate pathway. The labeling of the D-ara-bino-3-hexulose-6-phosphate, as well as the other sugar-Ps, indicates that this hexose-6-phosphate was the precursor to ribulose-5-phosphate that in turn was converted into ribose-5-phosphate by ribose-5-phosphate isomerase. Additional work has demonstrated that ribulose-5-phosphate is derived by the loss of formaldehyde from D-arabino-3-hexulose-6-phosphate, catalyzed by the protein product of the MJ1447 gene.

摘要

最近的研究提出了一个问题,即磷酸戊糖途径的产物4-磷酸赤藓糖是否参与产甲烷古菌的代谢(R. H. 怀特,《生物化学》43:7618 - 7627,2004)。为了探究詹氏产甲烷球菌中可能不存在4-磷酸赤藓糖的情况,我们检测了这种产甲烷菌的细胞提取物中是否存在该物质以及磷酸戊糖途径中的其他中间产物,并确定并比较了与细胞提取物一起孵育的[6,6-2H2]-和[U-13C]-标记的6-磷酸葡萄糖代谢产生的磷酸糖的标记模式。这项工作的结果表明,这些细胞中不存在磷酸戊糖途径的中间产物4-磷酸赤藓糖、5-磷酸木糖和7-磷酸景天庚酮糖,而存在磷酸核糖单磷酸途径的中间产物6-磷酸-D-阿拉伯-3-己酮糖。6-磷酸-D-阿拉伯-3-己酮糖以及其他磷酸糖的标记表明,这种6-磷酸己糖是5-磷酸核酮糖的前体,5-磷酸核酮糖又通过5-磷酸核糖异构酶转化为5-磷酸核糖。进一步的研究表明,5-磷酸核酮糖是由MJ1447基因的蛋白质产物催化6-磷酸-D-阿拉伯-3-己酮糖失去甲醛而产生的。

相似文献

3
Genomic organization and biochemistry of the ribulose monophosphate pathway and its application in biotechnology.
Appl Microbiol Biotechnol. 2009 Sep;84(3):407-16. doi: 10.1007/s00253-009-2120-7. Epub 2009 Jul 11.
5
Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic archaea.
J Bacteriol. 2004 Oct;186(19):6360-6. doi: 10.1128/JB.186.19.6360-6366.2004.
6
A pentose bisphosphate pathway for nucleoside degradation in Archaea.
Nat Chem Biol. 2015 May;11(5):355-60. doi: 10.1038/nchembio.1786. Epub 2015 Mar 30.
7
Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17815-20. doi: 10.1073/pnas.1414622111. Epub 2014 Dec 1.
9
The physiological role of the ribulose monophosphate pathway in bacteria and archaea.
Biosci Biotechnol Biochem. 2006 Jan;70(1):10-21. doi: 10.1271/bbb.70.10.

引用本文的文献

1
Modification and analysis of context-specific genome-scale metabolic models: methane-utilizing microbial chassis as a case study.
mSystems. 2025 Jan 21;10(1):e0110524. doi: 10.1128/msystems.01105-24. Epub 2024 Dec 19.
2
Why pyridoxal phosphate could be a functional predecessor of thiamine pyrophosphate and speculations on a primordial metabolism.
RSC Chem Biol. 2024 Apr 18;5(6):508-517. doi: 10.1039/d4cb00016a. eCollection 2024 Jun 5.
3
Fusion/fission protein family identification in Archaea.
mSystems. 2024 Jun 18;9(6):e0094823. doi: 10.1128/msystems.00948-23. Epub 2024 May 3.
4
RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy.
Signal Transduct Target Ther. 2024 Mar 27;9(1):70. doi: 10.1038/s41392-024-01777-5.
5
A non-carboxylating pentose bisphosphate pathway in halophilic archaea.
Commun Biol. 2022 Nov 24;5(1):1290. doi: 10.1038/s42003-022-04247-2.
6
Role of Structural Features in Oligomerization, Active-Site Integrity and Ligand Binding of Ribose-1,5-Bisphosphate Isomerase.
Comput Struct Biotechnol J. 2019 Feb 27;17:333-344. doi: 10.1016/j.csbj.2019.02.009. eCollection 2019.
7
Metabolomics analysis of gut barrier dysfunction in a trauma-hemorrhagic shock rat model.
Biosci Rep. 2019 Jan 8;39(1). doi: 10.1042/BSR20181215. Print 2019 Jan 31.
8
Characterization of Mutations That Affect the Nonoxidative Pentose Phosphate Pathway in Sinorhizobium meliloti.
J Bacteriol. 2017 Dec 20;200(2). doi: 10.1128/JB.00436-17. Print 2018 Jan 15.
9
Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5802-E5811. doi: 10.1073/pnas.1606043113. Epub 2016 Sep 15.
10
S-Inosyl-L-Homocysteine Hydrolase, a Novel Enzyme Involved in S-Adenosyl-L-Methionine Recycling.
J Bacteriol. 2015 Jul;197(14):2284-91. doi: 10.1128/JB.00080-15. Epub 2015 Apr 27.

本文引用的文献

3
Transaldolase of Methanocaldococcus jannaschii.
Archaea. 2004 Oct;1(4):255-62. doi: 10.1155/2004/608428.
6
Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis.
J Bacteriol. 2004 Oct;186(20):6956-69. doi: 10.1128/JB.186.20.6956-6969.2004.
8
The unique features of glycolytic pathways in Archaea.
Biochem J. 2003 Oct 15;375(Pt 2):231-46. doi: 10.1042/BJ20021472.
9
The ribulose monophosphate pathway operon encoding formaldehyde fixation in a thermotolerant methylotroph, Bacillus brevis S1.
FEMS Microbiol Lett. 2002 Sep 10;214(2):189-93. doi: 10.1111/j.1574-6968.2002.tb11345.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验