Varman Arul M, He Lian, Follenfant Rhiannon, Wu Weihua, Wemmer Sarah, Wrobel Steven A, Tang Yinjie J, Singh Seema
Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA 94550.
Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5802-E5811. doi: 10.1073/pnas.1606043113. Epub 2016 Sep 15.
Sphingobium sp. SYK-6 is a soil bacterium boasting a well-studied ligninolytic pathway and the potential for development into a microbial chassis for lignin valorization. An improved understanding of its metabolism will help researchers in the engineering of SYK-6 for the production of value-added chemicals through lignin valorization. We used C-fingerprinting, C metabolic flux analysis (C-MFA), and RNA-sequencing differential expression analysis to uncover the following metabolic traits: (i) SYK-6 prefers alkaline conditions, making it an efficient host for the consolidated bioprocessing of lignin, and it also lacks the ability to metabolize sugars or organic acids; (ii) the CO release (i.e., carbon loss) from the ligninolysis-based metabolism of SYK-6 is significantly greater than the CO release from the sugar-based metabolism of Escherichia coli; (iii) the vanillin catabolic pathway (which is the converging point of majority of the lignin catabolic pathways) is coupled with the tetrahydrofolate-dependent C1 pathway that is essential for the biosynthesis of serine, histidine, and methionine; (iv) catabolic end products of lignin (pyruvate and oxaloacetate) must enter the tricarboxylic acid (TCA) cycle first and then use phosphoenolpyruvate carboxykinase to initiate gluconeogenesis; and (v) C-MFA together with RNA-sequencing differential expression analysis establishes the vanillin catabolic pathway as the major contributor of NAD(P)H synthesis. Therefore, the vanillin catabolic pathway is essential for SYK-6 to obtain sufficient reducing equivalents for its healthy growth; cosubstrate experiments support this finding. This unique energy feature of SYK-6 is particularly interesting because most heterotrophs rely on the transhydrogenase, the TCA cycle, and the oxidative pentose phosphate pathway to obtain NADPH.
鞘氨醇单胞菌属(Sphingobium)的SYK-6菌株是一种土壤细菌,其木质素分解途径已得到充分研究,具有发展成为用于木质素增值的微生物底盘的潜力。深入了解其代谢过程将有助于研究人员对SYK-6进行工程改造,以便通过木质素增值生产增值化学品。我们使用碳指纹分析、碳代谢通量分析(C-MFA)和RNA测序差异表达分析来揭示以下代谢特征:(i)SYK-6偏好碱性条件,这使其成为木质素联合生物加工的有效宿主,并且它还缺乏代谢糖类或有机酸的能力;(ii)SYK-6基于木质素分解代谢的CO释放(即碳损失)显著大于大肠杆菌基于糖类代谢的CO释放;(iii)香草醛分解代谢途径(这是大多数木质素分解代谢途径的汇聚点)与依赖四氢叶酸的C1途径偶联,该途径对于丝氨酸、组氨酸和蛋氨酸的生物合成至关重要;(iv)木质素的分解代谢终产物(丙酮酸和草酰乙酸)必须首先进入三羧酸(TCA)循环,然后使用磷酸烯醇式丙酮酸羧激酶启动糖异生作用;(v)C-MFA与RNA测序差异表达分析共同确定香草醛分解代谢途径是NAD(P)H合成的主要贡献者。因此,香草醛分解代谢途径对于SYK-6获得足够的还原当量以实现健康生长至关重要;共底物实验支持这一发现。SYK-6这种独特的能量特征特别有趣,因为大多数异养生物依赖转氢酶、TCA循环和氧化戊糖磷酸途径来获得NADPH。