Suppr超能文献

衣原体GroEL通过与HrcA阻遏蛋白的直接相互作用来自动调节其自身的表达。

Chlamydial GroEL autoregulates its own expression through direct interactions with the HrcA repressor protein.

作者信息

Wilson Adam C, Wu Christine C, Yates John R, Tan Ming

机构信息

Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA.

出版信息

J Bacteriol. 2005 Nov;187(21):7535-42. doi: 10.1128/JB.187.21.7535-7542.2005.

Abstract

In the pathogenic bacterium Chlamydia trachomatis, a transcriptional repressor, HrcA, regulates the major heat shock operons, dnaK and groE. Cellular stress causes a transient increase in transcription of these heat shock operons through relief of HrcA-mediated repression, but the pathway leading to derepression is unclear. Elevated temperature alone is not sufficient, and it is hypothesized that additional chlamydial factors play a role. We used DNA affinity chromatography to purify proteins that interact with HrcA in vivo and identified a higher-order complex consisting of HrcA, GroEL, and GroES. This endogenous HrcA complex migrated differently than recombinant HrcA, but the complex could be disrupted, releasing native HrcA that resembled recombinant HrcA. In in vitro assays, GroEL increased the ability of HrcA to bind to the CIRCE operator and to repress transcription. Other chlamydial heat shock proteins, including the two additional GroEL paralogs present in all chlamydial species, did not modulate HrcA activity.

摘要

在致病性细菌沙眼衣原体中,一种转录阻遏物HrcA调控主要的热休克操纵子dnaK和groE。细胞应激通过解除HrcA介导的阻遏作用,导致这些热休克操纵子的转录瞬时增加,但导致去阻遏的途径尚不清楚。仅升高温度是不够的,据推测衣原体的其他因子发挥了作用。我们使用DNA亲和色谱法纯化体内与HrcA相互作用的蛋白质,并鉴定出一种由HrcA、GroEL和GroES组成的高阶复合物。这种内源性HrcA复合物的迁移方式与重组HrcA不同,但该复合物可以被破坏,释放出类似于重组HrcA的天然HrcA。在体外试验中,GroEL增强了HrcA与CIRCE操纵基因结合并抑制转录的能力。衣原体的其他热休克蛋白,包括所有衣原体物种中存在的另外两种GroEL旁系同源物,均未调节HrcA的活性。

相似文献

1
Chlamydial GroEL autoregulates its own expression through direct interactions with the HrcA repressor protein.
J Bacteriol. 2005 Nov;187(21):7535-42. doi: 10.1128/JB.187.21.7535-7542.2005.
2
Stress response gene regulation in Chlamydia is dependent on HrcA-CIRCE interactions.
J Bacteriol. 2004 Jun;186(11):3384-91. doi: 10.1128/JB.186.11.3384-3391.2004.
3
A Chlamydia-specific C-terminal region of the stress response regulator HrcA modulates its repressor activity.
J Bacteriol. 2011 Dec;193(23):6733-41. doi: 10.1128/JB.05792-11. Epub 2011 Sep 30.
5
Dual regulation of dnaK and groE operons by HrcA and Ca++ in Streptococcus pneumoniae.
Arch Pharm Res. 2008 Apr;31(4):462-7. doi: 10.1007/s12272-001-1179-4. Epub 2008 May 1.
6
Functional analysis of the heat shock regulator HrcA of Chlamydia trachomatis.
J Bacteriol. 2002 Dec;184(23):6566-71. doi: 10.1128/JB.184.23.6566-6571.2002.
7
Isolation and analysis of mutant alleles of the Bacillus subtilis HrcA repressor with reduced dependency on GroE function.
J Biol Chem. 2002 Sep 6;277(36):32659-67. doi: 10.1074/jbc.M201372200. Epub 2002 Jun 24.
8
Ca2+-dependent expression of the CIRCE regulon in Streptococcus pneumoniae.
Mol Microbiol. 2005 Jan;55(2):456-68. doi: 10.1111/j.1365-2958.2004.04416.x.
10
Biochemical and Genetic Analysis of the Chlamydia GroEL Chaperonins.
J Bacteriol. 2017 May 25;199(12). doi: 10.1128/JB.00844-16. Print 2017 Jun 15.

引用本文的文献

1
A lineage-specific heat-induced feedback loop controls HrcA to promote chlamydial fitness under stress.
bioRxiv. 2025 May 30:2025.05.30.657042. doi: 10.1101/2025.05.30.657042.
2
A conserved -specific Type III Secretion System effector linked to stress response.
Microbiology (Reading). 2025 Apr;171(4). doi: 10.1099/mic.0.001545.
3
Insights into the Orchestration of Gene Transcription Regulators in .
Int J Mol Sci. 2022 Nov 8;23(22):13688. doi: 10.3390/ijms232213688.
4
Robust Heat Shock Response in Lacking a Typical Heat Shock Sigma Factor.
Front Microbiol. 2022 Jan 3;12:812448. doi: 10.3389/fmicb.2021.812448. eCollection 2021.
5
Feeling the Heat: The HrcA Transcriptional Repressor Is an Intrinsic Protein Thermosensor.
Biomolecules. 2021 Sep 27;11(10):1413. doi: 10.3390/biom11101413.
6
Protein aggregation in bacteria.
FEMS Microbiol Rev. 2020 Jan 1;44(1):54-72. doi: 10.1093/femsre/fuz026.
8
DK1622 Coordinates Expressions of the Duplicate and Single Genes for Synergistic Functions of GroELs and GroES.
Front Microbiol. 2017 Apr 27;8:733. doi: 10.3389/fmicb.2017.00733. eCollection 2017.
9
Biochemical and Genetic Analysis of the Chlamydia GroEL Chaperonins.
J Bacteriol. 2017 May 25;199(12). doi: 10.1128/JB.00844-16. Print 2017 Jun 15.
10
Following the Footsteps of Chlamydial Gene Regulation.
Mol Biol Evol. 2015 Dec;32(12):3035-46. doi: 10.1093/molbev/msv193. Epub 2015 Sep 30.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
2
Molecular components of physiological stress responses in Escherichia coli.
Adv Biochem Eng Biotechnol. 2004;89:1-45. doi: 10.1007/b93957.
3
Stress response gene regulation in Chlamydia is dependent on HrcA-CIRCE interactions.
J Bacteriol. 2004 Jun;186(11):3384-91. doi: 10.1128/JB.186.11.3384-3391.2004.
4
Analysis of orthologous hrcA genes in Escherichia coli and Bacillus subtilis.
FEMS Microbiol Lett. 2004 May 1;234(1):9-17. doi: 10.1016/j.femsle.2004.02.017.
5
Chlamydial persistence: beyond the biphasic paradigm.
Infect Immun. 2004 Apr;72(4):1843-55. doi: 10.1128/IAI.72.4.1843-1855.2004.
8
Analysis of a DNA-binding motif of the Bacillus subtilis HrcA repressor protein.
FEMS Microbiol Lett. 2003 Jun 6;223(1):101-6. doi: 10.1016/S0378-1097(03)00350-1.
9
A method for the comprehensive proteomic analysis of membrane proteins.
Nat Biotechnol. 2003 May;21(5):532-8. doi: 10.1038/nbt819. Epub 2003 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验