Maxmen Amy, Browne William E, Martindale Mark Q, Giribet Gonzalo
Department of Organismic & Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA.
Nature. 2005 Oct 20;437(7062):1144-8. doi: 10.1038/nature03984.
Independent specialization of arthropod body segments has led to more than a century of debate on the homology of morphologically diverse segments, each defined by a lateral appendage and a ganglion of the central nervous system. The plesiomorphic composition of the arthropod head remains enigmatic because variation in segments and corresponding appendages is extreme. Within extant arthropod classes (Chelicerata, Myriapoda, Crustacea and Hexapoda--including the insects), correspondences between the appendage-bearing second (deutocerebral) and third (tritocerebral) cephalic neuromeres have been recently resolved on the basis of immunohistochemistry and Hox gene expression patterns. However, no appendage targets the first ganglion, the protocerebrum, and the corresponding segmental identity of this anterior region remains unclear. Reconstructions of stem-group arthropods indicate that the anteriormost region originally might have borne an ocular apparatus and a frontal appendage innervated by the protocerebrum. However, no study of the central nervous system in extant arthropods has been able to corroborate this idea directly, although recent analyses of cephalic gene expression patterns in insects suggest a segmental status for the protocerebral region. Here we investigate the developmental neuroanatomy of a putative basal arthropod, the pycnogonid sea spider, with immunohistochemical techniques. We show that the first pair of appendages, the chelifores, are innervated at an anterior position on the protocerebrum. This is the first true appendage shown to be innervated by the protocerebrum, and thus pycnogonid chelifores are not positionally homologous to appendages of extant arthropods but might, in fact, be homologous to the 'great appendages' of certain Cambrian stem-group arthropods.
节肢动物身体节段的独立特化引发了一个多世纪以来关于形态多样的节段同源性的争论,每个节段都由一对附肢和中枢神经系统的一个神经节所界定。节肢动物头部的原始组成仍然是个谜,因为节段和相应附肢的变异极大。在现存的节肢动物类群(螯肢动物亚门、多足纲、甲壳纲和六足亚门——包括昆虫)中,基于免疫组织化学和Hox基因表达模式,最近已解决了携带附肢的第二(中脑)和第三(后脑)头部神经节之间的对应关系。然而,没有附肢与第一神经节(前脑)相连,该前部区域相应的节段身份仍不清楚。干群节肢动物的重建表明,最前部区域最初可能带有一个眼器和由前脑支配的额附肢。然而,尽管最近对昆虫头部基因表达模式的分析表明前脑区域具有节段地位,但尚未有对现存节肢动物中枢神经系统的研究能够直接证实这一观点。在这里,我们用免疫组织化学技术研究了一种假定的基础节肢动物——海蜘蛛的发育神经解剖学。我们发现,第一对附肢(螯肢)在前脑的前部位置接受神经支配。这是第一个被证明由前脑支配的真正附肢,因此海蜘蛛的螯肢在位置上与现存节肢动物的附肢不同源,但实际上可能与某些寒武纪干群节肢动物的“大附肢”同源。