Lehmann Tobias, Heß Martin, Wanner Gerhard, Melzer Roland R
Bavarian State Collection of Zoology - SNSB, Münchhausenstraße 21, Munich, 81247, Germany.
BMC Biol. 2014 Aug 13;12:59. doi: 10.1186/s12915-014-0059-3.
The research field of connectomics arose just recently with the development of new three-dimensional-electron microscopy (EM) techniques and increasing computing power. So far, only a few model species (for example, mouse, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster) have been studied using this approach. Here, we present a first attempt to expand this circle to include pycnogonids, which hold a key position for the understanding of arthropod evolution. The visual neuropils in Achelia langi are studied using a focused ion beam-scanning electron microscope (FIB-SEM) crossbeam-workstation, and a three-dimensional serial reconstruction of the connectome is presented.
The two eyes of each hemisphere of the sea spider's eye tubercle are connected to a first and a second visual neuropil. The first visual neuropil is subdivided in two hemineuropils, each responsible for one eye and stratified into three layers. Six different neuron types postsynaptic to the retinula (R-cells) axons are characterized by their morphology: five types of descending unipolar neurons and one type of ascending neurons. These cell types are also identified by Golgi impregnations. Mapping of all identifiable chemical synapses indicates that the descending unipolar neurons are postsynaptic to the R-cells and, hence, are second-order neurons. The ascending neurons are predominantly presynaptic and sometimes postsynaptic to the R-cells and may play a feedback role.
Comparing these results with the compound eye visual system of crustaceans and insects - the only arthropod visual system studied so far in such detail - we found striking similarities in the morphology and synaptic organization of the different neuron types. Hence, the visual system of pycnogonids shows features of both chelicerate median and mandibulate lateral eyes.
随着新型三维电子显微镜(EM)技术的发展和计算能力的提升,连接组学这一研究领域才刚刚兴起。到目前为止,仅使用这种方法对少数模式生物(例如小鼠、线虫秀丽隐杆线虫和果蝇黑腹果蝇)进行了研究。在这里,我们首次尝试将这个范围扩大到包括海蜘蛛,海蜘蛛对于理解节肢动物的进化具有关键地位。我们使用聚焦离子束扫描电子显微镜(FIB - SEM)横梁工作站对兰氏艾氏海蜘蛛的视觉神经节进行了研究,并展示了连接组的三维序列重建。
海蜘蛛眼瘤每个半球的两只眼睛与第一和第二视觉神经节相连。第一视觉神经节被细分为两个半神经节,每个半神经节负责一只眼睛,并分层为三层。视网膜(R细胞)轴突突触后的六种不同神经元类型通过其形态特征得以区分:五种下行单极神经元类型和一种上行神经元类型。这些细胞类型也通过高尔基染色法得以鉴定。所有可识别化学突触的图谱表明,下行单极神经元是R细胞的突触后神经元,因此是二级神经元。上行神经元主要是突触前神经元,有时也是R细胞的突触后神经元,可能起到反馈作用。
将这些结果与甲壳类动物和昆虫的复眼视觉系统(这是迄今为止唯一被如此详细研究的节肢动物视觉系统)进行比较,我们发现不同神经元类型在形态和突触组织上存在显著相似性。因此,海蜘蛛的视觉系统兼具螯肢动物中眼和咀嚼式动物侧眼的特征。