Suppr超能文献

构建用于等距数据嵌入的具有最小总长度的k条边不相交生成树。

Building k edge-disjoint spanning trees of minimum total length for isometric data embedding.

作者信息

Yang Li

机构信息

Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008-5466, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2005 Oct;27(10):1680-3. doi: 10.1109/TPAMI.2005.192.

Abstract

Isometric data embedding requires construction of a neighborhood graph that spans all data points so that geodesic distance between any pair of data points could be estimated by distance along the shortest path between the pair on the graph. This paper presents an approach for constructing k-edge-connected neighborhood graphs. It works by finding k edge-disjoint spanning trees the sum of whose total lengths is a minimum. Experiments show that it outperforms the nearest neighbor approach for geodesic distance estimation.

摘要

等距数据嵌入需要构建一个跨越所有数据点的邻域图,以便通过图上任意两点之间最短路径的距离来估计它们之间的测地距离。本文提出了一种构建k边连通邻域图的方法。该方法通过找到k个边不相交的生成树,其总长度之和最小。实验表明,在测地距离估计方面,该方法优于最近邻方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验