Gao Song, Bui Tien D
Department of Computer Science, Concordia University, Montreal, QC H3G 1M8 Canada.
IEEE Trans Image Process. 2005 Oct;14(10):1537-49. doi: 10.1109/tip.2005.852200.
Recently, Chan and Vese developed an active contour model for image segmentation and smoothing by using piecewise constant and smooth representation of an image. Tsai et al. also independently developed a segmentation and smoothing method similar to the Chan and Vese piecewise smooth approach. These models are active contours based on the Mumford-Shah variational approach and the level-set method. In this paper, we develop a new hierarchical method which has many advantages compared to the Chan and Vese multiphase active contour models. First, unlike previous works, the curve evolution partial differential equations (PDEs) for different level-set functions are decoupled. Each curve evolution PDE is the equation of motion of just one level-set function, and different level-set equations of motion are solved in a hierarchy. This decoupling of the motion equations of the level-set functions speeds up the segmentation process significantly. Second, because of the coupling of the curve evolution equations associated with different level-set functions, the initialization of the level sets in Chan and Vese's method is difficult to handle. In fact, different initial conditions may produce completely different results. The hierarchical method proposed in this paper can avoid the problem due to the choice of initial conditions. Third, in this paper, we use the diffusion equation for denoising. This method, therefore, can deal with very noisy images. In general, our method is fast, flexible, not sensitive to the choice of initial conditions, and produces very good results.
最近,Chan和Vese通过使用图像的分段常数和平滑表示,开发了一种用于图像分割和平滑的活动轮廓模型。Tsai等人也独立开发了一种类似于Chan和Vese分段平滑方法的分割和平滑方法。这些模型是基于Mumford-Shah变分方法和水平集方法的活动轮廓。在本文中,我们开发了一种新的分层方法,与Chan和Vese多相活动轮廓模型相比具有许多优点。首先,与以前的工作不同,不同水平集函数的曲线演化偏微分方程(PDE)是解耦的。每个曲线演化PDE只是一个水平集函数的运动方程,不同的水平集运动方程在分层中求解。水平集函数运动方程的这种解耦显著加快了分割过程。其次,由于与不同水平集函数相关的曲线演化方程的耦合,Chan和Vese方法中水平集的初始化很难处理。事实上,不同的初始条件可能会产生完全不同的结果。本文提出的分层方法可以避免由于初始条件选择而产生的问题。第三,在本文中,我们使用扩散方程进行去噪。因此,该方法可以处理噪声很大的图像。一般来说,我们的方法快速、灵活,对初始条件的选择不敏感,并能产生非常好的结果。