Kishore P V V, Kumar K V V, Kumar D Anil, Prasad M V D, Goutham E N D, Rahul R, Krishna C B S Vamsi, Sandeep Y
Department of Electronics and Communications Engineering, K L University, Vaddeswaram, Guntur, India.
Springerplus. 2015 Dec 14;4:775. doi: 10.1186/s40064-015-1566-6. eCollection 2015.
Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.
超声医学(US)成像通过非侵入方式对人体内部进行成像,用于疾病诊断。斑点噪声会干扰超声图像,降低其视觉质量。本文提出了一种双重处理算法来减少这种乘性斑点噪声。第一重处理是在小波域中对像素使用基于块的阈值处理,包括硬阈值(BHT)和软阈值(BST),块大小分别为8、16、32和64且不重叠。这第一重处理是一种较好的去噪方法,可减少斑点并导致感兴趣对象模糊。第二重处理通过自适应小波融合来恢复对象边界和纹理。在块阈值处理后的超声图像中对退化对象的恢复是通过对原始超声图像和块阈值处理后的超声图像中的对象进行小波系数融合来实现的。使用具有归一化差分均值(NDF)的梯度直方图使融合规则和小波分解级别对每个块自适应,以在所得图像中去噪像素和对象像素之间引入最高水平的对比度。因此,所提出的双重方法被称为具有硬阈值和软阈值的自适应NDF块融合(ANBF-HT和ANBF-ST)。结果表明,通过所提出的双重处理,视觉质量提高到了一个可观的水平,其中第一重处理去除噪声,第二重处理恢复对象属性。峰值信噪比(PSNR)、归一化互相关系数(NCC)、边缘强度(ES)、图像质量指数(IQI)和结构相似性指数(SSIM)用于衡量双重处理技术的定量质量。通过与用于增强超声图像的各向异性扩散(AD)、全变分滤波(TVF)和经验模态分解(EMD)进行比较,对所提出方法进行了验证。超声图像由印度维杰亚瓦达的AMMA医院放射科实验室提供。