Suppr超能文献

一种针对佩特兹病的预后预测公式。

A proposed prognostic formula for Perthes' disease.

作者信息

Kamegaya M, Saisu T, Miura Y, Moriya H

机构信息

Chiba Children's Hospital, Chiba, Japan.

出版信息

Clin Orthop Relat Res. 2005 Nov;440:205-8. doi: 10.1097/01.blo.0000180601.23357.d9.

Abstract

UNLABELLED

We retrospectively reviewed 145 patients with unilateral Perthes' disease and compared a quantitative analysis of early radiographic signs with a predicted prognosis at long-term followup. The average age of the patients at followup was 18.7 years (range, 16.2-27.5 years). We used the age at onset and three radiographic factors as independent variables for multiple regression analysis. The final radiographic results were based on a modified Stulberg's classification as the dependent variable. Fifty patients (35%) had a good outcome, 33 patients (23%) had a fair outcome, and 62 patients (42%) had a poor outcome. The most reliable formula in the stepwise multiple regression analysis was calculated as: y = -0.697 + 0.418 (age score) + 0.860 (involvement score) + 0.248 (subluxation score). The radiographic stage at first visit had no influence on the final results. Multifactorial assessment by combination of age at onset and two radiographic factors (epiphyseal involvement and subluxation) was the most reliable for predicting the prognosis. A score of 1.5 points or less predicted a good prognosis and a score of 2.6 or more indicated a poor prognosis.

LEVEL OF EVIDENCE

Prognostic study, Level IV (case series). See the Guidelines for Authors for a complete description of levels of evidence.

摘要

未标注

我们回顾性研究了145例单侧佩特兹病患者,并比较了早期影像学征象的定量分析与长期随访时的预测预后。随访时患者的平均年龄为18.7岁(范围16.2 - 27.5岁)。我们将发病年龄和三个影像学因素作为多元回归分析的自变量。最终的影像学结果基于改良的斯图尔伯格分类作为因变量。50例患者(35%)预后良好,33例患者(23%)预后一般,62例患者(42%)预后较差。逐步多元回归分析中最可靠的公式计算为:y = -0.697 + 0.418(年龄评分)+ 0.860(受累评分)+ 0.248(半脱位评分)。首次就诊时的影像学分期对最终结果无影响。结合发病年龄和两个影像学因素(骨骺受累和半脱位)进行多因素评估对预测预后最为可靠。评分1.5分及以下预测预后良好,评分2.6分及以上提示预后较差。

证据水平

预后研究,IV级(病例系列)。有关证据水平的完整描述,请参阅作者指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验