Suppr超能文献

旋转瑞利-贝纳德对流中的方形图案。

Square patterns in rotating Rayleigh-Bénard convection.

作者信息

Sánchez-Alvarez J J, Serre E, del Arco E Crespo, Busse F H

机构信息

Departamento aFísica Fundamental, UNED, Apartado 60.141,28080 Madrid, Spain.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):036307. doi: 10.1103/PhysRevE.72.036307. Epub 2005 Sep 27.

Abstract

The Küppers-Lortz instability occurs in rotating Rayleigh-Bénard convection and is a paradigmatic example of spatiotemporal chaos. Since the steady state of convection rolls is unstable to disturbance rolls oriented with an angle of about 60 degrees with respect to the given rolls in the prograde direction [G. Küppers and D. Lortz, J. Fluid Mech. 35, 609 (1969)], a spatiotemporally chaotic pattern is realized with patches of rolls continuously replaced by other patches in which the roll axis is switched by about 60 degrees. Surprisingly and contrary to this established scenario, Bajaj [Phys. Rev. Lett. 81 (1998)] observed experimentally square patterns in a cylindrical layer in the range of parameters where Küppers-Lortz instability was expected. In this paper we present square patterns which we have obtained in a numerical study by taking into account realistic boundary conditions. The Navier-Stokes and heat transport equations have been solved in the Oberbeck-Boussinesq approximation. The numerical method is pseudospectral and second order accurate in time. The rotation velocity of the square pattern increases linearly with the control parameter epsilon=Ra/R a(c) -1 , as in the experiment of Bajaj Furthermore, it was observed that this velocity decreases when the aspect ratio of the cylinder increases. These results indicate that the square pattern appears when the flow is laterally confined. The range of epsilon for which this pattern is stable tends to vanish for more extended layers.

摘要

屈普斯 - 洛茨不稳定性出现在旋转瑞利 - 贝纳德对流中,是时空混沌的一个典型例子。由于对流涡旋的稳态对于在前进方向上相对于给定涡旋以约60度角取向的扰动涡旋是不稳定的[G. 屈普斯和D. 洛茨,《流体力学杂志》35, 609 (1969)],因此会实现一种时空混沌模式,其中涡旋斑块不断被其他斑块取代,在这些斑块中涡旋轴会切换约60度。令人惊讶的是,与这种既定情况相反,巴贾杰[《物理评论快报》81 (1998)]在预期会出现屈普斯 - 洛茨不稳定性的参数范围内,在圆柱形层中通过实验观察到了方形图案。在本文中,我们展示了在考虑实际边界条件的数值研究中获得的方形图案。在奥伯贝克 - 布西涅斯克近似下求解了纳维 - 斯托克斯方程和热传输方程。数值方法是伪谱的且在时间上具有二阶精度。方形图案的旋转速度随控制参数ε = Ra/R a(c) -1线性增加,正如巴贾杰实验中那样。此外,观察到当圆柱体的纵横比增加时,该速度会降低。这些结果表明,当流动在横向受到限制时会出现方形图案。对于更宽的层,这种图案稳定的ε范围趋于消失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验