Suppr超能文献

使用功能磁共振成像识别大脑中的大规模网络。

Identification of large-scale networks in the brain using fMRI.

作者信息

Bellec Pierre, Perlbarg Vincent, Jbabdi Saâd, Pélégrini-Issac Mélanie, Anton Jean-Luc, Doyon Julien, Benali Habib

机构信息

Unité 678, INSERM/UPMC, 91 Boulevard de l'Hôpital, 75634 Paris Cedex 13, France.

出版信息

Neuroimage. 2006 Feb 15;29(4):1231-43. doi: 10.1016/j.neuroimage.2005.08.044. Epub 2005 Oct 24.

Abstract

Cognition is thought to result from interactions within large-scale networks of brain regions. Here, we propose a method to identify these large-scale networks using functional magnetic resonance imaging (fMRI). Regions belonging to such networks are defined as sets of strongly interacting regions, each of which showing a homogeneous temporal activity. Our method of large-scale network identification (LSNI) proceeds by first detecting functionally homogeneous regions. The networks of functional interconnections are then found by comparing the correlations among these regions against a model of the correlations in the noise. To test the LSNI method, we first evaluated its specificity and sensitivity on synthetic data sets. Then, the method was applied to four real data sets with a block-designed motor task. The LSNI method correctly recovered the regions whose temporal activity was locked to the stimulus. In addition, it detected two other main networks highly reproducible across subjects, whose activity was dominated by slow fluctuations (0-0.1 Hz). One was located in medial and dorsal regions, and mostly overlapped the "default" network of the brain at rest [Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., 2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the U.S.A. 100, 253-258]; the other was composed of lateral frontal and posterior parietal regions. The LSNI method we propose allows to detect in an exploratory and systematic way all the regions and large-scale networks activated in the working brain.

摘要

认知被认为是大脑区域大规模网络内相互作用的结果。在此,我们提出一种使用功能磁共振成像(fMRI)来识别这些大规模网络的方法。属于此类网络的区域被定义为强相互作用区域的集合,每个区域都表现出均匀的时间活动。我们的大规模网络识别(LSNI)方法首先通过检测功能上均匀的区域来进行。然后,通过将这些区域之间的相关性与噪声中的相关性模型进行比较,找到功能互连的网络。为了测试LSNI方法,我们首先在合成数据集上评估了它的特异性和敏感性。然后,将该方法应用于四个具有块设计运动任务的真实数据集。LSNI方法正确地恢复了时间活动与刺激锁定的区域。此外,它还检测到另外两个在受试者之间高度可重复的主要网络,其活动主要由缓慢波动(0 - 0.1 Hz)主导。一个位于内侧和背侧区域,大部分与静息状态下大脑的“默认”网络重叠[Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., 2003. 静息大脑中的功能连接性:默认模式假设的网络分析。美国国家科学院院刊100, 253 - 258];另一个由外侧额叶和顶叶后部区域组成。我们提出的LSNI方法允许以探索性和系统性的方式检测工作大脑中激活的所有区域和大规模网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验