Remus Timothy P, Zima Aleksey V, Bossuyt Julie, Bare Dan J, Martin Jody L, Blatter Lothar A, Bers Donald M, Mignery Gregory A
Department of Physiology, Loyola University Chicago, Maywood, Illinois 60153, USA.
J Biol Chem. 2006 Jan 6;281(1):608-16. doi: 10.1074/jbc.M509645200. Epub 2005 Oct 24.
Phosphoinositides participate in many signaling cascades via phospholipase C stimulation, which hydrolyzes phosphatidylinositol 4,5-bisphosphate, producing second messengers diacylglycerol and inositol 1,4,5-trisphosphate (InsP3). Destructive chemical approaches required to measure [InsP3] limit spatiotemporal understanding of subcellular InsP3 signaling. We constructed novel fluorescence resonance energy transfer-based InsP3 biosensors called FIRE (fluorescent InsP3-responsive element) by fusing plasmids encoding the InsP3-binding domain of InsP3 receptors (types 1-3) between cyan fluorescent protein and yellow fluorescent protein sequences. FIRE was expressed and characterized in COS-1 cells, cultured neonatal cardiac myocytes, and incorporated into an adenoviral vector for expression in adult cardiac ventricular myocytes. FIRE-1 exhibits an approximately 11% increase in the fluorescence ratio (F530/F480) at saturating [InsP3] (apparent K(d) = 31.3 +/- 6.7 nm InsP3). In COS-1 cells, neonatal rat cardiac myocytes and adult cat ventricular myocytes FIRE-1 exhibited comparable dynamic range and a 10% increase in donor (cyan fluorescent protein) fluorescence upon bleach of yellow fluorescent protein, indicative of fluorescence resonance energy transfer. In FIRE-1 expressing ventricular myocytes endothelin-1, phenylephrine, and angiotensin II all produced rapid and spatially resolved increases in [InsP3] using confocal microscopy (with free [InsP3] rising to approximately 30 nm). Local entry of intracellular InsP3 via membrane rupture by a patch pipette (containing InsP3)in myocytes expressing FIRE-1 allowed detailed spatiotemporal monitoring of intracellular InsP3 diffusion. Both endothelin-1-induced and direct InsP3 application (via pipette rupture) revealed that InsP3 diffusion into the nucleus occurs with a delay and blunted rise of [InsP3] versus cytosolic [InsP3]. These new biosensors allow studying InsP3 dynamics at high temporal and spatial resolution that will be powerful in under-standing InsP3 signaling in intact cells.
磷酸肌醇通过磷脂酶C刺激参与许多信号级联反应,磷脂酶C可水解磷脂酰肌醇4,5-二磷酸,产生第二信使二酰基甘油和肌醇1,4,5-三磷酸(InsP3)。测量[InsP3]所需的破坏性化学方法限制了对亚细胞InsP3信号的时空理解。我们通过在青色荧光蛋白和黄色荧光蛋白序列之间融合编码InsP3受体(1-3型)InsP3结合域的质粒,构建了一种基于荧光共振能量转移的新型InsP3生物传感器,称为FIRE(荧光InsP3响应元件)。FIRE在COS-1细胞、培养的新生心肌细胞中进行表达和表征,并被整合到腺病毒载体中用于在成年心室肌细胞中表达。在饱和[InsP3](表观K(d)=31.3±6.7 nM InsP3)时,FIRE-1的荧光比率(F530/F480)增加约11%。在COS-1细胞、新生大鼠心肌细胞和成年猫心室肌细胞中,FIRE-1表现出相当的动态范围,并且在黄色荧光蛋白漂白后供体(青色荧光蛋白)荧光增加10%,这表明发生了荧光共振能量转移。在表达FIRE-1的心室肌细胞中,使用共聚焦显微镜观察到内皮素-1、去氧肾上腺素和血管紧张素II均能使[InsP3]快速且在空间上分辨地增加(游离[InsP3]上升至约30 nM)。通过膜片吸管(含有InsP3)对表达FIRE-1的心肌细胞进行膜破裂,使细胞内InsP3局部进入,从而能够对细胞内InsP3扩散进行详细的时空监测。内皮素-1诱导和直接应用InsP3(通过吸管破裂)均显示,InsP3向细胞核的扩散存在延迟,且与细胞质[InsP3]相比,[InsP3]的上升较为平缓。这些新型生物传感器能够以高时空分辨率研究InsP3动态变化,这对于理解完整细胞中的InsP3信号传导将具有重要作用。