Dorval Alan D, White John A
Department of Biomedical Engineering, Center for BioDynamics, Boston University, Boston, Massachusetts 02215, USA.
J Neurosci. 2005 Oct 26;25(43):10025-8. doi: 10.1523/JNEUROSCI.3557-05.2005.
Previous experimental and computational work (for review, see White et al., 2000) has suggested that channel noise, generated by the stochastic flicker of voltage-gated ion channels, can be a major contributor to electrical membrane noise in neurons. In spiny stellate neurons of the entorhinal cortex, we remove the primary source of channel noise by pharmacologically blocking the native persistent Na+ conductance. Via the dynamic-clamp technique (Robinson and Kawai, 1993; Sharp et al., 1993), we then introduce virtual persistent Na+ channels into the membranes of the stellate neurons. By altering the mathematical properties of these virtual "knock-ins," we demonstrate that stochastic flicker of persistent Na+ channels is necessary for the existence of slow perithreshold oscillations that characterize stellate neurons. Channel noise also alters the ability of stellate neurons to phase lock to weak sinusoidal stimuli. These results provide the first direct demonstration that physiological levels of channel noise can produce qualitative changes in the integrative properties of neurons.
先前的实验和计算工作(综述见White等人,2000年)表明,电压门控离子通道的随机闪烁所产生的通道噪声可能是神经元电膜噪声的主要来源。在内嗅皮层的棘状星状神经元中,我们通过药理学方法阻断天然的持续性钠电导,去除通道噪声的主要来源。然后,通过动态钳技术(Robinson和Kawai,1993年;Sharp等人,1993年),我们将虚拟的持续性钠通道引入星状神经元的膜中。通过改变这些虚拟“敲入”通道的数学特性,我们证明持续性钠通道的随机闪烁是星状神经元特有的缓慢阈下振荡存在的必要条件。通道噪声还会改变星状神经元对弱正弦刺激进行锁相的能力。这些结果首次直接证明,生理水平的通道噪声可导致神经元整合特性发生质性变化。