Berecki Géza, Zegers Jan G, Bhuiyan Zahurul A, Verkerk Arie O, Wilders Ronald, van Ginneken Antoni C G
Experimental and Molecular Cardiology Group, Academic Medical Center, University of Amsterdam, The Netherlands.
J Physiol. 2006 Jan 15;570(Pt 2):237-50. doi: 10.1113/jphysiol.2005.096578. Epub 2005 Oct 27.
Long-QT3 syndrome (LQT3) is linked to cardiac sodium channel gene (SCN5A) mutations. In this study, we used the 'dynamic action potential clamp' (dAPC) technique to effectively replace the native sodium current (I(Na)) of the Priebe-Beuckelmann human ventricular cell model with wild-type (WT) or mutant I(Na) generated in a human embryonic kidney (HEK)-293 cell that is voltage clamped by the free-running action potential of the ventricular cell. We recorded I(Na) from HEK cells expressing either WT or LQT3-associated Y1795C or A1330P SCN5A at 35 degrees C, and let this current generate and shape the action potential (AP) of subepicardial, mid-myocardial and subendocardial model cells. The HEK cell's endogenous background current was completely removed by a real-time digital subtraction procedure. With WT I(Na), AP duration (APD) was longer than with the original Priebe-Beuckelmann model I(Na), due to a late I(Na) component of approximately 30 pA that could not be revealed with conventional voltage-clamp protocols. With mutant I(Na), this late component was larger ( approximately 100 pA), producing a marked increase in APD ( approximately 70-80 ms at 1 Hz for the subepicardial model cell). The late I(Na) magnitude showed reverse frequency dependence, resulting in a significantly steeper APD-frequency relation in the mutant case. AP prolongation was more pronounced for the mid-myocardial cell type, resulting in increased APD dispersion for each of the mutants. For both mutants, a 2 s pause following rapid (2 Hz) pacing resulted in distorted AP morphology and beat-to-beat fluctuations of I(Na). Our dAPC data directly demonstrate the arrhythmogenic nature of LQT3-associated SCN5A mutations.
长QT3综合征(LQT3)与心脏钠通道基因(SCN5A)突变有关。在本研究中,我们使用“动态动作电位钳”(dAPC)技术,用在人胚胎肾(HEK)-293细胞中产生的野生型(WT)或突变型I(Na)有效替代Priebe-Beuckelmann人心室细胞模型的天然钠电流(I(Na)),该HEK细胞由心室细胞的自主动作电位进行电压钳制。我们在35℃记录了表达WT或与LQT3相关的Y1795C或A1330P SCN5A的HEK细胞的I(Na),并让该电流产生并塑造心外膜、心肌中层和心内膜下模型细胞的动作电位(AP)。通过实时数字减法程序完全消除了HEK细胞的内源性背景电流。使用WT I(Na)时,动作电位持续时间(APD)比原始Priebe-Beuckelmann模型的I(Na)更长,这是由于约30 pA的晚钠电流成分,而传统电压钳协议无法揭示该成分。使用突变型I(Na)时,该晚成分更大(约100 pA),导致APD显著增加(心外膜下模型细胞在1 Hz时约为70 - 80 ms)。晚钠电流幅度显示出反向频率依赖性,导致突变情况下APD - 频率关系明显更陡峭。心肌中层细胞类型的AP延长更为明显,导致每个突变体的APD离散度增加。对于这两个突变体,快速(2 Hz)起搏后2 s的停顿会导致AP形态扭曲和I(Na)的逐搏波动。我们的dAPC数据直接证明了与LQT3相关的SCN5A突变的致心律失常性质。