Coombes Kevin R, Tsavachidis Spiridon, Morris Jeffrey S, Baggerly Keith A, Hung Mien-Chie, Kuerer Henry M
Department of Biostatistics and Applied Mathematics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
Proteomics. 2005 Nov;5(16):4107-17. doi: 10.1002/pmic.200401261.
Mass spectrometry is being used to find disease-related patterns in mixtures of proteins derived from biological fluids. Questions have been raised about the reproducibility and reliability of peak quantifications using this technology. We collected nipple aspirate fluid from breast cancer patients and healthy women, pooled them into a quality control sample, and produced 24 replicate SELDI spectra. We developed a novel algorithm to process the spectra, denoising with the undecimated discrete wavelet transform (UDWT), and evaluated it for consistency and reproducibility. UDWT efficiently decomposes spectra into noise and signal. The noise is consistent and uncorrelated. Baseline correction produces isolated peak clusters separated by flat regions. Our method reproducibly detects more peaks than the method implemented in Ciphergen software. After normalization and log transformation, the mean coefficient of variation of peak heights is 10.6%. Our method to process spectra provides improvements over existing methods. Denoising using the UDWT appears to be an important step toward obtaining results that are more accurate. It improves the reproducibility of quantifications and supplies tools for investigation of the variations in the technology more carefully. Further study will be required, because we do not have a gold standard providing an objective assessment of which peaks are present in the samples.
质谱分析法正被用于在源自生物流体的蛋白质混合物中寻找与疾病相关的模式。关于使用该技术进行峰定量的可重复性和可靠性已经出现了一些问题。我们从乳腺癌患者和健康女性中收集乳头抽吸液,将它们混合成一个质量控制样本,并生成了24个重复的表面增强激光解吸电离飞行时间质谱(SELDI)光谱。我们开发了一种新颖的算法来处理光谱,使用非抽取离散小波变换(UDWT)进行去噪,并对其一致性和可重复性进行了评估。UDWT能有效地将光谱分解为噪声和信号。噪声是一致且不相关的。基线校正产生了由平坦区域分隔的孤立峰簇。我们的方法比Ciphergen软件中实现的方法能更可重复地检测到更多峰。经过归一化和对数变换后,峰高的平均变异系数为10.6%。我们处理光谱的方法比现有方法有所改进。使用UDWT进行去噪似乎是朝着获得更准确结果迈出的重要一步。它提高了定量的可重复性,并为更仔细地研究该技术中的变化提供了工具。由于我们没有一个金标准来客观评估样本中存在哪些峰,因此还需要进一步研究。