Suppr超能文献

使用相关随机游走在斑块网络上进行搜索:基于马尔可夫链模型的空间利用与最优觅食预测

Searching on patch networks using correlated random walks: space usage and optimal foraging predictions using Markov chain models.

作者信息

Prasad B R Guru, Borges Renee M

机构信息

Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India.

出版信息

J Theor Biol. 2006 May 21;240(2):241-9. doi: 10.1016/j.jtbi.2005.09.006. Epub 2005 Oct 26.

Abstract

We describe a novel representation of a discrete correlated random walk as the transition matrix of a Markov chain with the displacements as the states. Such a representation makes it possible to utilize results from the theory of absorbing Markov chains, to make biologically interesting predictions without having to resort to Monte Carlo simulations. Our motivation for constructing such a representation is to explore the relationship between the movement strategy of an animal searching for resources upon a network of patches, and its consequent utilization of space and foraging success. As an illustrative case study, we have determined the optimal movement strategy and the consequent usage of space for a central place forager utilizing a continuous movement space which is discretized as a hexagonal lattice. The optimal movement strategy determines the size of the optimal home range. In this example, the animal uses mnemokinesis, which is a sinuosity regulating mechanism, to return it to the central place. The movement strategy thus refers to the choice of the intrinsic path sinuosity and the strength of the mnemokinetic mechanism. Although the movement space has been discretized as a regular lattice in this example, the method can be readily applied to naturally compartmentalized movement spaces, such as forest canopy networks. This paper is thus an attempt at incorporating results from the theory of random walk-based animal movements into Foraging Theory.

摘要

我们将离散相关随机游走描述为一个马尔可夫链的转移矩阵,其中位移作为状态。这种表示方式使得利用吸收马尔可夫链理论的结果成为可能,从而能够做出具有生物学意义的预测,而无需借助蒙特卡罗模拟。我们构建这种表示方式的动机是探索动物在斑块网络上寻找资源时的运动策略与其随后对空间的利用和觅食成功率之间的关系。作为一个说明性的案例研究,我们确定了利用连续运动空间(离散化为六边形晶格)的中心地觅食者的最优运动策略以及随后的空间利用情况。最优运动策略决定了最优活动范围的大小。在这个例子中,动物利用记忆运动,这是一种弯曲调节机制,使其回到中心位置。因此,运动策略指的是内在路径弯曲度的选择和记忆运动机制的强度。尽管在这个例子中运动空间已被离散化为规则晶格,但该方法可以很容易地应用于自然划分的运动空间,如森林冠层网络。因此,本文试图将基于随机游走的动物运动理论的结果纳入觅食理论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验