Siebers Bettina, Schönheit Peter
Universität Duisburg-Essen, Campus Essen, FB Biologie und Geografie, Mikrobiologie, Universitätsstr.5, D-45117 Essen, Germany.
Curr Opin Microbiol. 2005 Dec;8(6):695-705. doi: 10.1016/j.mib.2005.10.014. Epub 2005 Oct 26.
Sugar-utilizing hyperthermophilic and halophilic Archaea degrade glucose and glucose polymers to acetate or to CO2 using O2, nitrate, sulfur or sulfate as electron acceptors. Comparative analyses of glycolytic pathways in these organisms indicate a variety of differences from the classical Emden-Meyerhof and Entner-Doudoroff pathways that are operative in Bacteria and Eukarya, respectively. The archaeal pathways are characterized by the presence of numerous novel enzymes and enzyme families that catalyze, for example, the phosphorylation of glucose and of fructose 6-phosphate, the isomerization of glucose 6-phosphate, the cleavage of fructose 1,6-bisphosphate, the oxidation of glyceraldehyde 3-phosphate and the conversion of acetyl-CoA to acetate. Recent major advances in deciphering the complexity of archaeal central carbohydrate metabolism were gained by combination of classical biochemical and genomic-based approaches.
利用糖类的嗜热嗜盐古菌以氧气、硝酸盐、硫或硫酸盐作为电子受体,将葡萄糖和葡萄糖聚合物降解为乙酸盐或二氧化碳。对这些生物中糖酵解途径的比较分析表明,它们与分别在细菌和真核生物中起作用的经典糖酵解途径(即糖酵解途径和磷酸戊糖途径)存在多种差异。古菌途径的特点是存在许多新型酶和酶家族,例如催化葡萄糖和6-磷酸果糖磷酸化、6-磷酸葡萄糖异构化、1,6-二磷酸果糖裂解、3-磷酸甘油醛氧化以及乙酰辅酶A转化为乙酸盐的酶。通过将经典生物化学方法与基于基因组的方法相结合,在破解古菌中心碳水化合物代谢复杂性方面取得了近期的重大进展。