Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Kiel, Germany.
Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Kiel, Germany
J Bacteriol. 2021 Mar 23;203(8). doi: 10.1128/JB.00690-20.
The halophilic archaeon has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. Following our previous studies on key enzymes of this pathway, we now focus on the characterization of enzymes involved in 3-phosphoglycerate conversion to pyruvate, in anaplerosis, and in acetyl coenzyme A (acetyl-CoA) formation from pyruvate. These enzymes include phosphoglycerate mutase, enolase, pyruvate kinase, phosphoenolpyruvate carboxylase, and pyruvate-ferredoxin oxidoreductase. The essential function of these enzymes were shown by transcript analyses and growth experiments with respective deletion mutants. Furthermore, we show that -during aerobic growth on glucose-excreted significant amounts of acetate, which was consumed in the stationary phase (acetate switch). The enzyme catalyzing the conversion of acetyl-CoA to acetate as part of the acetate overflow mechanism, an ADP-forming acetyl-CoA synthetase (ACD), was characterized. The functional involvement of ACD in acetate formation and of AMP-forming acetyl-CoA synthetases (ACSs) in activation of excreted acetate was proven by using respective deletion mutants. Together, the data provide a comprehensive analysis of enzymes of the spED pathway and of anaplerosis and report the first genetic evidence of the functional involvement of enzymes of the acetate switch in archaea. In this work, we provide a comprehensive analysis of glucose degradation via the semiphosphorylative Entner-Doudoroff pathway in the haloarchaeal model organism The study includes transcriptional analyses, growth experiments with deletion mutants. and characterization of all enzymes involved in the conversion of 3-phosphoglycerate to acetyl coenzyme A (acetyl-CoA) and in anaplerosis. Phylogenetic analyses of several enzymes indicate various lateral gene transfer events from bacteria to haloarchaea. Furthermore, we analyzed the key players involved in the acetate switch, i.e., in the formation (overflow) and subsequent consumption of acetate during aerobic growth on glucose. Together, the data provide novel aspects of glucose degradation, anaplerosis, and acetate switch in and thus expand our understanding of the unusual sugar metabolism in archaea.
嗜盐古菌 被提出通过半磷酸化 Entner-Doudoroff (spED) 途径降解葡萄糖。在我们之前对该途径关键酶的研究之后,我们现在专注于研究参与 3-磷酸甘油酸转化为丙酮酸、补充作用和从丙酮酸形成乙酰辅酶 A (acetyl-CoA) 的酶。这些酶包括磷酸甘油酸变位酶、烯醇酶、丙酮酸激酶、磷酸烯醇丙酮酸羧化酶和丙酮酸-铁氧还蛋白氧化还原酶。通过各自的缺失突变体的转录分析和生长实验证明了这些酶的基本功能。此外,我们还表明,在有氧生长葡萄糖时,会大量分泌出乙酸,而在静止期(乙酸转换)会消耗掉这些乙酸。作为乙酸溢出机制的一部分,催化乙酰辅酶 A 转化为乙酸的酶是 ADP 形成的乙酰辅酶 A 合成酶 (ACD),该酶已被表征。通过使用各自的缺失突变体,证明了 ACD 在乙酸形成中的功能参与以及 AMP 形成的乙酰辅酶 A 合成酶 (ACS) 在激活分泌的乙酸中的功能参与。总的来说,这些数据提供了 spED 途径和补充作用中酶的综合分析,并报告了酶在古菌中参与乙酸转换的功能的第一个遗传证据。在这项工作中,我们提供了嗜盐古菌模型生物中半磷酸化 Entner-Doudoroff 途径降解葡萄糖的综合分析。该研究包括转录分析、缺失突变体的生长实验和参与 3-磷酸甘油酸转化为乙酰辅酶 A (acetyl-CoA) 和补充作用的所有酶的特性。对几种酶的系统发育分析表明,来自细菌的基因横向转移到了嗜盐古菌中。此外,我们还分析了参与乙酸转换的关键因素,即在有氧生长葡萄糖时,参与乙酸的形成(溢出)和随后的消耗。总的来说,这些数据为 和古菌中葡萄糖降解、补充作用和乙酸转换提供了新的方面,从而扩展了我们对古菌中异常糖代谢的理解。