Suppr超能文献

用于制备特征明确的灵敏DNA芯片的多孔硅衬底评估。

Assessment of porous silicon substrate for well-characterised sensitive DNA chip implement.

作者信息

Bessueille F, Dugas V, Vikulov V, Cloarec J P, Souteyrand E, Martin J R

机构信息

LEOM, UMR CNRS 5512, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France.

出版信息

Biosens Bioelectron. 2005 Dec 15;21(6):908-16. doi: 10.1016/j.bios.2005.02.007.

Abstract

A biochip approach based on porous silicon as substrate is presented. The goal is to enhance the sensitivity of the biochip by increasing the specific surface area on the support. The elaboration of porous silicon layers has been optimized to guarantee good accessibility for large bio-molecule targets. Oligonucleotide probes are synthesised directly on the surface using phosphoramidite chemistry. The high specific surface area of porous silicon allows the direct characterisation, by infrared spectroscopy, of the porous layer formation and the functionalisation steps. The monolayer grafting and derivatisation protocol is additionally characterized by wettability and fluorescence microscopy. The surface modification of porous layers (i.e. thermal oxidation and chemical derivatisation) ensures the stability of the structure against strong chemical reagents used during the direct oligonucleotide synthesis. Finally the protocol is successfully transferred to a flat Si/SiO(2) substrate, and validated by biological target specific recognition during hybridisation tests. In particular, radioactive measurements show a 10-fold enhancement of the oligonucleotide surface density on the porous silicon substrate compared to the flat thermal silica.

摘要

本文介绍了一种以多孔硅为基底的生物芯片方法。目标是通过增加载体上的比表面积来提高生物芯片的灵敏度。多孔硅层的制备已得到优化,以确保对大型生物分子靶标具有良好的可及性。使用亚磷酰胺化学方法在表面直接合成寡核苷酸探针。多孔硅的高比表面积使得能够通过红外光谱直接表征多孔层的形成和功能化步骤。单层接枝和衍生化方案还通过润湿性和荧光显微镜进行表征。多孔层的表面改性(即热氧化和化学衍生化)确保了结构在直接寡核苷酸合成过程中使用的强化学试剂作用下的稳定性。最后,该方案成功转移到平坦的Si/SiO₂基底上,并通过杂交测试中的生物靶标特异性识别进行了验证。特别是,放射性测量表明,与平坦的热二氧化硅相比,多孔硅基底上的寡核苷酸表面密度提高了10倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验