Ecole Polytechnique, CNRS, Route de Saclay, 91128 Palaiseau, France.
Biosens Bioelectron. 2009 Dec 15;25(4):952-5. doi: 10.1016/j.bios.2009.08.046. Epub 2009 Sep 3.
We have designed a new architecture of fluorescent microarrays based on a thin layer of hydrogenated amorphous silicon-carbon alloy (a-Si(0.85)C(0.15):H) deposited on an aluminium-on-glass back reflector. These substrates are modified with an organic monolayer anchored through Si-C bonds and terminated with carboxyl groups, allowing for the covalent immobilization of biological probes. The fluorescence yield is maximized by optimization of the a-Si(0.85)C(0.15):H layer thickness. This approach is assessed for DNA recognition, demonstrating an increase in sensitivity by over one order of magnitude as compared to commercial slides, and the possibility of following in situ the molecular recognition event (hybridization). The immobilization chemistry provides these substrates with a superior chemical stability toward ageing or long-term exposure to physiological buffers, which allows for many successive hybridization/dehybridization cycles without measurable changes in performance.
我们设计了一种新的荧光微阵列架构,基于沉积在铝玻璃背反射器上的氢化非晶硅-碳合金(a-Si(0.85)C(0.15):H)的薄层。这些衬底经过有机单层修饰,通过 Si-C 键固定,并以羧基端终止,允许生物探针通过共价键固定。通过优化 a-Si(0.85)C(0.15):H 层厚度,最大限度地提高荧光产率。这种方法用于 DNA 识别,与商业载玻片相比,灵敏度提高了一个数量级以上,并且可以原位跟踪分子识别事件(杂交)。固定化学使这些衬底具有优异的耐老化或长期耐生理缓冲液的化学稳定性,这允许进行许多连续的杂交/解杂交循环,而不会导致性能发生可测量的变化。