Steinbüchel Alexander
Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany.
Curr Opin Biotechnol. 2005 Dec;16(6):607-13. doi: 10.1016/j.copbio.2005.10.011. Epub 2005 Nov 2.
In recent years the biotechnological production of bulk biopolymers has focused on the synthesis of biodegradable polymers to replace their non-biodegradable counterparts derived from fossil resources. Examples include polyhydroxyalkanoates and polylactic acid, which act as substitutes for polyolefins. By contrast, the biotechnological production of non-biodegradable polymers from renewable resources has so far been scarcely considered, probably because this idea contradicts the paradigm that all natural compounds are biodegradable. Polythioesters, which were recently described as new biopolymers, do not follow this paradigm because although they are produced by bacteria, they are persistent to microbial degradation. Mankind has a need for both non-biodegradable and biodegradable polymers and methods to produce them from renewable resources will be of great value.
近年来,大宗生物聚合物的生物技术生产主要集中在合成可生物降解的聚合物,以取代源自化石资源的不可生物降解的同类聚合物。例子包括聚羟基脂肪酸酯和聚乳酸,它们可作为聚烯烃的替代品。相比之下,从可再生资源中生物技术生产不可生物降解聚合物的研究至今几乎未被考虑,这可能是因为这一想法与所有天然化合物都是可生物降解的范式相矛盾。聚硫酯是最近被描述为新型生物聚合物的物质,它并不遵循这一范式,因为尽管它们是由细菌产生的,但它们对微生物降解具有抗性。人类既需要不可生物降解的聚合物,也需要可生物降解的聚合物,从可再生资源生产它们的方法将具有巨大价值。