Suppr超能文献

果蝇膜兴奋性突变体中的神经病理学

Neuropathology in Drosophila membrane excitability mutants.

作者信息

Fergestad Tim, Ganetzky Barry, Palladino Michael J

机构信息

Laboratory of Genetics, University of Wisconsin, Madison 53706, USA.

出版信息

Genetics. 2006 Feb;172(2):1031-42. doi: 10.1534/genetics.105.050625. Epub 2005 Nov 4.

Abstract

Mutations affecting ion channels and neuronal membrane excitability have been identified in Drosophila as well as in other organisms and characterized for their acute effects on behavior and neuronal function. However, the long-term effect of these perturbations on the maintenance of neuronal viability has not been studied in detail. Here we perform an initial survey of mutations affecting Na+ channels and K+ channels in Drosophila to investigate their effects on life span and neuronal viability as a function of age. We find that mutations that decrease membrane excitability as well as those that increase excitability can trigger neurodegeneration to varying degrees. Results of double-mutant interactions with dominant Na+/K+ ATPase mutations, which themselves cause severe neurodegeneration, suggest that excitotoxicity owing to hyperexcitability is insufficient to explain the resultant phenotype. Although the exact mechanisms remain unclear, our results suggest that there is an important link between maintenance of proper neuronal signaling and maintenance of long-term neuronal viability. Disruption of these signaling mechanisms in any of a variety of ways increases the incidence of neurodegeneration.

摘要

在果蝇以及其他生物体中,已鉴定出影响离子通道和神经元膜兴奋性的突变,并对其对行为和神经元功能的急性影响进行了表征。然而,这些扰动对神经元活力维持的长期影响尚未得到详细研究。在这里,我们对果蝇中影响钠通道和钾通道的突变进行了初步调查,以研究它们作为年龄函数对寿命和神经元活力的影响。我们发现,降低膜兴奋性的突变以及增加兴奋性的突变都能在不同程度上引发神经退行性变。与显性钠/钾ATP酶突变的双突变相互作用结果表明,这种突变本身会导致严重的神经退行性变,提示过度兴奋引起的兴奋性毒性不足以解释所产生的表型。尽管确切机制尚不清楚,但我们的结果表明,维持适当的神经元信号传导与维持长期神经元活力之间存在重要联系。以任何多种方式破坏这些信号传导机制都会增加神经退行性变的发生率。

相似文献

1
Neuropathology in Drosophila membrane excitability mutants.
Genetics. 2006 Feb;172(2):1031-42. doi: 10.1534/genetics.105.050625. Epub 2005 Nov 4.
2
An ALS-Associated Mutant SOD1 Rapidly Suppresses KCNT1 (Slack) Na-Activated K Channels in Neurons.
J Neurosci. 2017 Feb 22;37(8):2258-2265. doi: 10.1523/JNEUROSCI.3102-16.2017. Epub 2017 Jan 24.
3
Neural dysfunction and neurodegeneration in Drosophila Na+/K+ ATPase alpha subunit mutants.
J Neurosci. 2003 Feb 15;23(4):1276-86. doi: 10.1523/JNEUROSCI.23-04-01276.2003.
4
Genetic suppression of seizure susceptibility in Drosophila.
J Neurophysiol. 2001 Sep;86(3):1211-25. doi: 10.1152/jn.2001.86.3.1211.
6
The ion channel narrow abdomen is critical for neural output of the Drosophila circadian pacemaker.
Neuron. 2005 Dec 22;48(6):965-76. doi: 10.1016/j.neuron.2005.10.030.
8
The Drosophila melanogaster translational repressor pumilio regulates neuronal excitability.
Genetics. 2002 Jul;161(3):1177-85. doi: 10.1093/genetics/161.3.1177.
9
Drosophila SLC5A11 Mediates Hunger by Regulating K(+) Channel Activity.
Curr Biol. 2016 Aug 8;26(15):1965-1974. doi: 10.1016/j.cub.2016.05.076. Epub 2016 Jul 7.

引用本文的文献

1
An integrative systems-biology approach defines mechanisms of Alzheimer's disease neurodegeneration.
Nat Commun. 2025 May 20;16(1):4441. doi: 10.1038/s41467-025-59654-w.
2
Evolutionarily Conserved DHX9/MLE Helicase Is Involved in the Regulation of Its Own mRNA Expression Level in Drosophila melanogaster.
Dokl Biochem Biophys. 2025 Feb;520(1):1-5. doi: 10.1134/S1607672924601239. Epub 2025 Jan 31.
3
An integrative systems-biology approach defines mechanisms of Alzheimer's disease neurodegeneration.
bioRxiv. 2024 Oct 9:2024.03.17.585262. doi: 10.1101/2024.03.17.585262.
5
Regulation of Aging and Longevity by Ion Channels and Transporters.
Cells. 2022 Mar 31;11(7):1180. doi: 10.3390/cells11071180.
9
Dying Neurons Utilize Innate Immune Signaling to Prime Glia for Phagocytosis during Development.
Dev Cell. 2019 Feb 25;48(4):506-522.e6. doi: 10.1016/j.devcel.2018.12.019. Epub 2019 Feb 7.
10
Shortened Lifespan and Other Age-Related Defects in Bang Sensitive Mutants of .
G3 (Bethesda). 2018 Dec 10;8(12):3953-3960. doi: 10.1534/g3.118.200610.

本文引用的文献

2
General mechanisms of axonal damage and its prevention.
J Neurol Sci. 2005 Jun 15;233(1-2):3-13. doi: 10.1016/j.jns.2005.03.031.
3
Reduced sleep in Drosophila Shaker mutants.
Nature. 2005 Apr 28;434(7037):1087-92. doi: 10.1038/nature03486.
4
Neurodegenerative conditions associated with ageing: a molecular interplay?
Mech Ageing Dev. 2005 Jan;126(1):23-33. doi: 10.1016/j.mad.2004.09.033.
5
Determinants of voltage-gated potassium channel surface expression and localization in Mammalian neurons.
Crit Rev Biochem Mol Biol. 2004 May-Jun;39(3):125-45. doi: 10.1080/10409230490475417.
7
Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway.
Curr Biol. 2004 May 25;14(10):885-90. doi: 10.1016/j.cub.2004.03.059.
8
Neuroprotection by Na+ channel blockade.
J Neurosurg Anesthesiol. 2004 Jan;16(1):100-1. doi: 10.1097/00008506-200401000-00022.
9
Na(+), K(+)-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death.
Biochem Pharmacol. 2003 Oct 15;66(8):1601-9. doi: 10.1016/s0006-2952(03)00531-8.
10
The biology of epilepsy genes.
Annu Rev Neurosci. 2003;26:599-625. doi: 10.1146/annurev.neuro.26.010302.081210.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验