The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.
Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.
Elife. 2019 Apr 26;8:e44186. doi: 10.7554/eLife.44186.
Glial-neuronal signaling at synapses is widely studied, but how glia interact with neuronal somas to regulate their activity is unclear. cortex glia are restricted to brain regions devoid of synapses, providing an opportunity to characterize interactions with neuronal somas. Mutations in the cortex glial elevate basal Ca, predisposing animals to seizure-like behavior. To determine how cortex glial Ca signaling controls neuronal excitability, we performed an in vivo modifier screen of the seizure phenotype. We show that elevation of glial Ca causes hyperactivation of calcineurin-dependent endocytosis and accumulation of early endosomes. Knockdown of sandman, a K channel, recapitulates seizures. Indeed, sandman expression on cortex glial membranes is substantially reduced in mutants, indicating enhanced internalization of sandman predisposes animals to seizures. These data provide an unexpected link between glial Ca signaling and the well-known role of glia in K buffering as a key mechanism for regulating neuronal excitability.
突触处的神经胶质-神经元信号传递已得到广泛研究,但神经胶质如何与神经元胞体相互作用以调节其活性尚不清楚。皮质神经胶质细胞局限于无突触的脑区,为研究其与神经元胞体的相互作用提供了机会。皮质神经胶质细胞中的突变会导致基础钙升高,使动物易发生类似癫痫发作的行为。为了确定皮质神经胶质细胞钙信号如何控制神经元兴奋性,我们对 癫痫表型进行了体内修饰筛检。我们发现,钙升高会导致钙调磷酸酶依赖性内吞作用的过度激活和早期内体的积累。sandman(一种 K+通道)的敲低可重现 癫痫发作。事实上,在 突变体中,sandman 在皮质神经胶质细胞膜上的表达大大减少,表明 sandman 的内化增加使动物易发生癫痫发作。这些数据为神经胶质细胞钙信号与众所周知的神经胶质细胞在 K+缓冲中的作用之间提供了一个意外的联系,这是调节神经元兴奋性的关键机制。