Suppr超能文献

各向同性多调和B样条:尺度函数与小波

Isotropic polyharmonic B-splines: scaling functions and wavelets.

作者信息

Van De Ville Dimitri, Blu Thierry, Unser Michael

机构信息

Biomedical Imaging Group, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland.

出版信息

IEEE Trans Image Process. 2005 Nov;14(11):1798-813. doi: 10.1109/tip.2005.857249.

Abstract

In this paper, we use polyharmonic B-splines to build multidimensional wavelet bases. These functions are nonseparable, multidimensional basis functions that are localized versions of radial basis functions. We show that Rabut's elementary polyharmonic B-splines do not converge to a Gaussian as the order parameter increases, as opposed to their separable B-spline counterparts. Therefore, we introduce a more isotropic localization operator that guarantees this convergence, resulting into the isotropic polyharmonic B-splines. Next, we focus on the two-dimensional quincunx subsampling scheme. This configuration is of particular interest for image processing because it yields a finer scale progression than the standard dyadic approach. However, up until now, the design of appropriate filters for the quincunx scheme has mainly been done using the McClellan transform. In our approach, we start from the scaling functions, which are the polyharmonic B-splines and, as such, explicitly known, and we derive a family of polyharmonic spline wavelets corresponding to different flavors of the semi-orthogonal wavelet transform; e.g., orthonormal, B-spline, and dual. The filters are automatically specified by the scaling relations satisfied by these functions. We prove that the isotropic polyharmonic B-spline wavelet converges to a combination of four Gabor atoms, which are well separated in the frequency domain. We also show that these wavelets are nearly isotropic and that they behave as an iterated Laplacian operator at low frequencies. We describe an efficient fast Fourier transform-based implementation of the discrete wavelet transform based on polyharmonic B-splines.

摘要

在本文中,我们使用多调和B样条来构建多维小波基。这些函数是非可分离的多维基函数,是径向基函数的局部化版本。我们表明,与可分离的B样条对应物不同,随着阶数参数的增加,拉布特的基本多调和B样条不会收敛到高斯函数。因此,我们引入了一个更各向同性的局部化算子来保证这种收敛,从而得到各向同性多调和B样条。接下来,我们关注二维梅花形子采样方案。这种配置在图像处理中特别有意义,因为它比标准的二进方法产生更精细的尺度递进。然而,到目前为止,梅花形方案的合适滤波器设计主要是使用麦克莱伦变换完成的。在我们的方法中,我们从缩放函数开始,这些缩放函数就是多调和B样条,并且是明确已知的,我们推导出了一族对应于不同类型半正交小波变换(例如正交、B样条和对偶)的多调和样条小波。这些滤波器由这些函数满足的缩放关系自动指定。我们证明各向同性多调和B样条小波收敛到四个伽柏原子的组合,这些原子在频域中相距很远。我们还表明这些小波几乎是各向同性的,并且在低频时它们的行为类似于迭代拉普拉斯算子。我们描述了基于多调和B样条的离散小波变换的一种基于快速傅里叶变换的高效实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验