Moulton Lawrence H
Department of International Health, The Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 20912, USA.
Clin Trials. 2004;1(3):297-305. doi: 10.1191/1740774504cn024oa.
Group-randomized study designs are useful when individually randomized designs are either not possible, or will not be able to estimate the parameters of interest. Blocked and/or stratified (for example, pair-matched) designs have been used, and their properties statistically evaluated by many researchers. Group-randomized trials often have small numbers of experimental units, and strong, geographically induced between-unit correlation, which increase the chance of obtaining a "bad" randomization outcome. This article describes a procedure--random selection from a list of acceptable allocations--to allocate treatment conditions in a way that ensures balance on relevant covariates. Numerous individual- and group-level covariates can be balanced using exact or caliper criteria. Simulation results indicate that this method has good frequency properties, but some care may be needed not to overly constrain the randomization. There is a trade-off between achieving good balance through a highly constrained design, and jeopardizing the appearance of impartiality of the investigator and potentially departing from the nominal Type I error.
当个体随机设计不可行或无法估计感兴趣的参数时,群组随机研究设计很有用。已经使用了区组和/或分层(例如,配对匹配)设计,并且许多研究人员对其性质进行了统计评估。群组随机试验通常实验单位数量较少,并且存在强烈的、由地理位置引起的单位间相关性,这增加了获得“不良”随机化结果的可能性。本文描述了一种程序——从可接受分配列表中随机选择——以确保在相关协变量上达到平衡的方式分配治疗条件。可以使用精确或卡尺标准平衡众多个体和群组层面的协变量。模拟结果表明,该方法具有良好的频率特性,但可能需要注意不要过度限制随机化。在通过高度受限的设计实现良好平衡与损害研究者公正性的表象并可能偏离名义上的I型错误之间存在权衡。