Suppr超能文献

对于初治洛匹那韦且既往蛋白酶抑制剂暴露有限的患者,通过洛匹那韦基因型抑制商预测早期和确诊病毒学应答。

Prediction of early and confirmed virological response by genotypic inhibitory quotients for lopinavir in patients naïve for lopinavir with limited exposure to previous protease inhibitors.

作者信息

Torti Carlo, Uccelli Maria Cristina, Quiros-Roldan Eugenia, Gargiulo Franco, Tirelli Valeria, Lapadula Giuseppe, Regazzi Mario, Pierotti Piera, Tinelli Carmine, De Luca Andrea, Patroni Andrea, Manca Nino, Carosi Giampiero

机构信息

Institute for Infectious and Tropical Diseases, University of Brescia, School of Medicine, Piazzale Spedali Civili 1, 25123 Brescia, Italy.

出版信息

J Clin Virol. 2006 Apr;35(4):414-9. doi: 10.1016/j.jcv.2005.10.001. Epub 2005 Nov 8.

Abstract

OBJECTIVE

To determine the impact of genotypic inhibitory quotient (GIQ) for lopinavir (LPV) in patients failing HAART with limited antiretroviral exposure.

DESIGN

Retrospective analysis of a prospective trial.

METHODS

Lopinavir GIQ was calculated as the ratio between the mean trough concentration (C(trough)) and the number of protease mutations using eight different HIV drug resistance mutation lists or algorithms. Early (by week 12) and confirmed (up to week 24) virological response (HIV-RNA< 400 copies/mL, ECVR) was used as dependent variable in logistic regression model.

RESULTS

Seventy-one of 109 (65%) patients achieved ECVR. At multivariable logistic regression analysis, each mug/mL increase of GIQ was correlated with increasing probability of ECVR as far as the following mutations were computed: multi-protease inhibitor (PI) associated mutations listed by IAS (OR=1.17; 95% CI=0.99-1.39; P=0.058), mutations associated with LPV resistance by ANRS algorithm (OR=1.21; 95% CI=1.02-1.44; P=0.03), major mutations associated with LPV resistance by Stanford database (OR=1.16; 95% CI=1-1.35; P=0.05), and the whole set of mutations associated with LPV resistance in the same database (OR=1.22; 95% CI=1.02-1.46; P=0.03). Using ROC curve method, a specific threshold GIQ was assessed, above which this parameter could predict ECVR with the highest sensitivity (74.6% with GIQ obtained through Stanford LPV mutations) or specificity (89.5% with GIQ obtained through ANRS LPV mutations).

CONCLUSIONS

Our results suggest that increasing GIQ can improve virological outcome even in patients with limited exposure to PIs. Further studies are necessary to understand what HIV protease mutations should be considered and whether such mutations should be weighted differently to improve LPV GIQ predictive value.

摘要

目的

确定洛匹那韦(LPV)的基因型抑制商(GIQ)对接受高效抗逆转录病毒治疗(HAART)但抗逆转录病毒药物暴露有限且治疗失败患者的影响。

设计

对一项前瞻性试验进行回顾性分析。

方法

使用八种不同的HIV耐药突变列表或算法,将洛匹那韦GIQ计算为平均谷浓度(C(trough))与蛋白酶突变数量之比。早期(第12周时)和确认的(至第24周)病毒学应答(HIV-RNA<400拷贝/mL,ECVR)用作逻辑回归模型中的因变量。

结果

109例患者中有71例(65%)实现了ECVR。在多变量逻辑回归分析中,就计算出的以下突变而言,GIQ每增加1 mug/mL与ECVR概率增加相关:国际艾滋病学会(IAS)列出的多蛋白酶抑制剂(PI)相关突变(OR=1.17;95%置信区间=0.99-1.39;P=0.058)、法国国家艾滋病研究机构(ANRS)算法确定的与洛匹那韦耐药相关的突变(OR=1.21;95%置信区间=1.02-1.44;P=0.03)、斯坦福数据库中与洛匹那韦耐药相关的主要突变(OR=1.16;95%置信区间=1-1.35;P=0.05)以及同一数据库中与洛匹那韦耐药相关的整套突变(OR=1.22;95%置信区间=1.02-1.46;P=0.03)。使用ROC曲线法评估了一个特定的GIQ阈值,高于该阈值此参数可预测ECVR,具有最高的敏感性(通过斯坦福洛匹那韦突变获得的GIQ为74.6%)或特异性(通过ANRS洛匹那韦突变获得的GIQ为89.5%)。

结论

我们的结果表明,即使在PI暴露有限的患者中,增加GIQ也可改善病毒学结局。有必要进一步开展研究,以了解应考虑哪些HIV蛋白酶突变以及这些突变是否应进行不同加权以提高洛匹那韦GIQ的预测价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验