Kucharski Robert, Maleszka Ryszard
Visual Sciences and Centre for the Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University, Canberra, Australia.
J Mol Neurosci. 2005;27(3):269-76. doi: 10.1385/JMN:27:3:269.
To test the idea that caffeine might induce changes in gene expression in the honeybee brain, we contrasted the transcriptional profiles of control and caffeine-treated brains using high-throughput cDNA microarrays. Additional quantitative real-time PCR was performed on a subset of eight transcripts to visualize the temporal changes induced by caffeine. Genes that were significantly upregulated in caffeine-treated brains included those involved in synaptic signaling (GABA:Na symporter, dopamine D2R-like receptor, and synapsin), cytoskeletal modifications (kinesin and microtubule motors), protein translation (ribosomal protein RpL4, elongation factors), and calcium-dependent processes (calcium transporter, calmodulin- dependent cyclic nucleotide phosphodiesterase). In addition, our study uncovered a number of novel, caffeine-inducible genes that appear to be unique to the honeybee. Time-dependent profiling of caffeine-sensitive gene expression shows significant upregulation 1 h after treatment followed by moderate downregulation after 4 h with no additional changes occuring after 24 h. Our results provide initial evidence that the dopaminergic system and calcium exchange are the main targets of caffeine in the honeybee brain and suggest that molecular responses to caffeine in an invertebrate brain are similar to those in vertebrate organisms.
为了验证咖啡因可能会引起蜜蜂大脑基因表达变化这一想法,我们使用高通量cDNA微阵列对比了对照大脑和经咖啡因处理的大脑的转录谱。对八个转录本的一个子集进行了额外的定量实时PCR,以观察咖啡因诱导的时间变化。在经咖啡因处理的大脑中显著上调的基因包括那些参与突触信号传导的基因(γ-氨基丁酸:钠同向转运体、多巴胺D2R样受体和突触素)、细胞骨架修饰(驱动蛋白和微管马达)、蛋白质翻译(核糖体蛋白RpL4、延伸因子)以及钙依赖性过程(钙转运体、钙调蛋白依赖性环核苷酸磷酸二酯酶)。此外,我们的研究发现了一些新的、咖啡因诱导的基因,这些基因似乎是蜜蜂特有的。对咖啡因敏感基因表达的时间依赖性分析显示,处理后1小时显著上调,随后4小时适度下调,24小时后没有其他变化。我们的结果提供了初步证据,表明多巴胺能系统和钙交换是咖啡因在蜜蜂大脑中的主要靶点,并表明无脊椎动物大脑对咖啡因的分子反应与脊椎动物相似。