Suppr超能文献

果蝇起搏器之间的重置信号使早晚活动同步。

A resetting signal between Drosophila pacemakers synchronizes morning and evening activity.

作者信息

Stoleru Dan, Peng Ying, Nawathean Pipat, Rosbash Michael

机构信息

Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA.

出版信息

Nature. 2005 Nov 10;438(7065):238-42. doi: 10.1038/nature04192.

Abstract

The biochemical machinery that underlies circadian rhythms is conserved among animal species and drives self-sustained molecular oscillations and functions, even within individual asynchronous tissue-culture cells. Yet the rhythm-generating neural centres of higher eukaryotes are usually composed of interconnected cellular networks, which contribute to robustness and synchrony as well as other complex features of rhythmic behaviour. In mammals, little is known about how individual brain oscillators are organized to orchestrate a complex behavioural pattern. Drosophila is arguably more advanced from this point of view: we and others have recently shown that a group of adult brain clock neurons expresses the neuropeptide PDF and controls morning activity (small LN(v) cells; M-cells), whereas another group of clock neurons controls evening activity (CRY+, PDF- cells; E-cells). We have generated transgenic mosaic animals with different circadian periods in morning and evening cells. Here we show, by behavioural and molecular assays, that the six canonical groups of clock neurons are organized into two separate neuronal circuits. One has no apparent effect on locomotor rhythmicity in darkness, but within the second circuit the molecular and behavioural timing of the evening cells is determined by morning-cell properties. This is due to a daily resetting signal from the morning to the evening cells, which run at their genetically programmed pace between consecutive signals. This neural circuit and oscillator-coupling mechanism ensures a proper relationship between the timing of morning and evening locomotor activity.

摘要

昼夜节律背后的生化机制在动物物种间是保守的,甚至在单个异步组织培养细胞内也能驱动自我维持的分子振荡和功能。然而,高等真核生物的节律产生神经中枢通常由相互连接的细胞网络组成,这些网络有助于增强节律行为的稳健性、同步性以及其他复杂特征。在哺乳动物中,关于单个脑振荡器如何组织以协调复杂行为模式的了解甚少。从这一角度来看,果蝇可能更为先进:我们和其他研究人员最近发现,一组成年脑时钟神经元表达神经肽PDF并控制早晨活动(小的LN(v)细胞;M细胞),而另一组时钟神经元控制傍晚活动(CRY+、PDF-细胞;E细胞)。我们已经培育出了在早晨和傍晚细胞中具有不同昼夜周期的转基因嵌合体动物。在此,我们通过行为和分子分析表明,六组典型的时钟神经元被组织成两个独立的神经回路。其中一个回路在黑暗中对运动节律没有明显影响,但在第二个回路中,傍晚细胞的分子和行为时间由早晨细胞的特性决定。这是由于从早晨细胞到傍晚细胞的每日重置信号,该信号以其基因编程的速度在连续信号之间运行。这种神经回路和振荡器耦合机制确保了早晨和傍晚运动活动时间之间的恰当关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验