Suppr超能文献

关于视交叉上核生物钟光周期机制中双振荡器模型的起源与进化

On the origin and evolution of the dual oscillator model underlying the photoperiodic clockwork in the suprachiasmatic nucleus.

作者信息

Evans Jennifer A, Schwartz William J

机构信息

Department of Biomedical Sciences, College of Health Sciences, Marquette University, Milwaukee, WI, USA.

Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.

出版信息

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Jul;210(4):503-511. doi: 10.1007/s00359-023-01659-1. Epub 2023 Jul 23.

Abstract

Decades have now passed since Colin Pittendrigh first proposed a model of a circadian clock composed of two coupled oscillators, individually responsive to the rising and setting sun, as a flexible solution to the challenge of behavioral and physiological adaptation to the changing seasons. The elegance and predictive power of this postulation has stimulated laboratories around the world in searches to identify and localize such hypothesized evening and morning oscillators, or sets of oscillators, in insects, rodents, and humans, with experimental designs and approaches keeping pace over the years with technological advances in biology and neuroscience. Here, we recount the conceptual origin and highlight the subsequent evolution of this dual oscillator model for the circadian clock in the mammalian suprachiasmatic nucleus; and how, despite our increasingly sophisticated view of this multicellular pacemaker, Pittendrigh's binary conception has remained influential in our clock models and metaphors.

摘要

自科林·皮特恩德里希首次提出生物钟模型以来,几十年过去了。该模型认为生物钟由两个相互耦合的振荡器组成,分别对日出和日落做出反应,是应对行为和生理适应季节变化挑战的灵活解决方案。这一假设的精妙之处和预测能力激发了世界各地的实验室,致力于在昆虫、啮齿动物和人类中识别和定位这种假设的夜间和早晨振荡器或振荡器组,多年来实验设计和方法一直紧跟生物学和神经科学的技术进步。在这里,我们讲述了这个生物钟双振荡器模型在哺乳动物视交叉上核中的概念起源,并强调了其后续的演变;以及尽管我们对这个多细胞起搏器的看法日益复杂,但皮特恩德里希的二元概念在我们的时钟模型和隐喻中仍然具有影响力。

相似文献

1
On the origin and evolution of the dual oscillator model underlying the photoperiodic clockwork in the suprachiasmatic nucleus.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Jul;210(4):503-511. doi: 10.1007/s00359-023-01659-1. Epub 2023 Jul 23.
6
Encoding seasonal information in a two-oscillator model of the multi-oscillator circadian clock.
Eur J Neurosci. 2018 Oct;48(8):2718-2727. doi: 10.1111/ejn.13697. Epub 2017 Oct 6.
7
Clinical Chronobiology: Circadian Rhythms in Health and Disease.
Semin Neurol. 2025 Mar 10. doi: 10.1055/a-2538-3259.
9
The molecular circadian clock of eosinophils: a potential therapeutic target for asthma.
Am J Physiol Cell Physiol. 2025 May 1;328(5):C1394-C1408. doi: 10.1152/ajpcell.00149.2025. Epub 2025 Mar 25.

引用本文的文献

1
Seasonal timing and interindividual differences in shiftwork adaptation.
NPJ Digit Med. 2025 May 28;8(1):300. doi: 10.1038/s41746-025-01678-z.
2
Decoding Neuropeptide Complexity: Advancing Neurobiological Insights from Invertebrates to Vertebrates through Evolutionary Perspectives.
ACS Chem Neurosci. 2025 May 7;16(9):1662-1679. doi: 10.1021/acschemneuro.5c00053. Epub 2025 Apr 22.
3
Identification of angiotensin II-responsive circadian clock gene expression in adrenal zona glomerulosa cells and human adrenocortical H295R cells.
Front Endocrinol (Lausanne). 2025 Mar 26;16:1525844. doi: 10.3389/fendo.2025.1525844. eCollection 2025.
4
Incorporating Physical Activity in a New Two-Oscillator Model of Circadian Activity in Nocturnal and Diurnal Mammals.
J Biol Rhythms. 2025 Feb;40(1):27-35. doi: 10.1177/07487304241303554. Epub 2024 Dec 26.
5
The Functional Connectome Mediating Circadian Synchrony in the Suprachiasmatic Nucleus.
bioRxiv. 2024 Dec 17:2024.12.06.627294. doi: 10.1101/2024.12.06.627294.
6
Photoperiod, food restriction and memory for objects and places in mice.
Sci Rep. 2024 Sep 16;14(1):21566. doi: 10.1038/s41598-024-72548-z.
7
A clock for all seasons.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Jul;210(4):473-480. doi: 10.1007/s00359-024-01711-8. Epub 2024 Jun 19.
8
Dietary restriction modulates ultradian rhythms and autocorrelation properties in mice behavior.
Commun Biol. 2024 Mar 9;7(1):303. doi: 10.1038/s42003-024-05991-3.
9
The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward.
J Biol Rhythms. 2024 Apr;39(2):135-165. doi: 10.1177/07487304231225706. Epub 2024 Feb 16.
10
One seasonal clock fits all?
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Jul;210(4):641-647. doi: 10.1007/s00359-023-01680-4. Epub 2023 Nov 10.

本文引用的文献

1
Cholecystokinin neurons in mouse suprachiasmatic nucleus regulate the robustness of circadian clock.
Neuron. 2023 Jul 19;111(14):2201-2217.e4. doi: 10.1016/j.neuron.2023.04.016. Epub 2023 May 11.
2
Somatostatin regulates central clock function and circadian responses to light.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2216820120. doi: 10.1073/pnas.2216820120. Epub 2023 Apr 25.
4
Cryptochrome 1 as a state variable of the circadian clockwork of the suprachiasmatic nucleus: Evidence from translational switching.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2203563119. doi: 10.1073/pnas.2203563119. Epub 2022 Aug 17.
6
The Neuronal Circuit of the Dorsal Circadian Clock Neurons in .
Front Physiol. 2022 Apr 29;13:886432. doi: 10.3389/fphys.2022.886432. eCollection 2022.
8
Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network.
EMBO J. 2021 Oct 18;40(20):e108614. doi: 10.15252/embj.2021108614. Epub 2021 Sep 6.
9
Phase Gradients and Anisotropy of the Suprachiasmatic Network: Discovery of Phaseoids.
eNeuro. 2021 Sep 9;8(5). doi: 10.1523/ENEURO.0078-21.2021. Print 2021 Sep-Oct.
10
Weekend Light Shifts Evoke Persistent Circadian Neural Network Desynchrony.
J Neurosci. 2021 Jun 16;41(24):5173-5189. doi: 10.1523/JNEUROSCI.3074-19.2021. Epub 2021 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验