Greenhouse Joel B, Seltman Howard
Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Clin Trials. 2005;2(4):311-8; discussion 319-24, 364-78. doi: 10.1191/1740774505cn095oa.
One feature of the Bayesian approach is that it provides methods for synthesizing what is known about a question of interest and provides a formalism based on the laws of probability for incorporating this auxiliary knowledge into the planning and the analysis of the next study. In this comment, we use elements of the Goodman-Sladky case study to illustrate (1) the use of Bayesian methods to quantify historical information about an intervention through the specification of a prior distribution, (2) an approach to the analysis of the sensitivity of the conclusions of a Bayesian analysis to the specification of the prior distribution, and (3) we comment on the role of research synthesis for combining information about an intervention from different data sources as a tool to help summarize evidence about the intervention.
贝叶斯方法的一个特点是,它提供了综合关于感兴趣问题已知信息的方法,并基于概率定律提供了一种形式主义,用于将这种辅助知识纳入下一项研究的规划和分析中。在本评论中,我们利用古德曼 - 斯拉德基案例研究的要素来说明:(1)通过指定先验分布,使用贝叶斯方法量化关于一种干预措施的历史信息;(2)分析贝叶斯分析结论对先验分布指定的敏感性的方法;(3)我们评论研究综合作为一种工具在结合来自不同数据源的关于一种干预措施的信息以帮助总结关于该干预措施的证据方面的作用。