Xie Hui, Heitjan Daniel F
Channing Laboratory, Harvard Medical School, Boston, MA, USA.
Clin Trials. 2004 Feb;1(1):21-30. doi: 10.1191/1740774504cn005oa.
In many clinical trials it is possible for some subjects to cross over between treatment arms. One can evaluate the effect of crossover by modeling it as a missing-data problem, where for subjects who cross over, one treats the unobserved value of the outcome in the original randomization arm as the missing data. The as-treated analysis is invalid if the crossover is nonignorable, in the sense that the crossovers represent a nonrandom sample of the randomized subjects. A recent area of general interest is the development of methods for measuring the sensitivity of inferences to nonignorability in the missing-data mechanism; one such approach is that of Troxel et al. In this paper we apply their method to the problem of measuring sensitivity to nonignorable crossover in randomized trials, extending it to the case where the crossover mechanism may differ between arms. Our method allows us to identify circumstances under which the as-treated analysis may be more or less sensitive to nonignorable crossover. We illustrate it with the example of a randomized clinical trial (RCT) in multiple sclerosis and a study of the effect of military service on income.
在许多临床试验中,一些受试者有可能在不同治疗组之间交叉。可以将交叉视为一个缺失数据问题来评估其影响,对于交叉的受试者,将其在原始随机分组组中未观察到的结局值视为缺失数据。如果交叉是不可忽略的,即交叉代表随机分组受试者的非随机样本,那么实际治疗分析就是无效的。最近一个普遍感兴趣的领域是开发用于衡量推断对缺失数据机制中不可忽略性的敏感性的方法;Troxel等人的方法就是其中之一。在本文中,我们将他们的方法应用于衡量随机试验中对不可忽略交叉的敏感性问题,将其扩展到交叉机制可能在不同组之间存在差异的情况。我们的方法使我们能够确定实际治疗分析对不可忽略交叉可能更敏感或更不敏感的情况。我们用一项多发性硬化症的随机临床试验(RCT)以及一项关于兵役对收入影响的研究为例进行说明。