Division of Epidemiology & Biostatistics (M/C 923), School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, Room 984, Chicago, 60612-4336, IL; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V6S0G6, Canada; Arthritis Research Canada, Richmond, BC, V6X 2C7, Canada.
Division of Epidemiology & Biostatistics (M/C 923), School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, Room 984, Chicago, 60612-4336, IL.
Comput Methods Programs Biomed. 2018 Oct;164:207-220. doi: 10.1016/j.cmpb.2018.06.014. Epub 2018 Jul 4.
The popular assumption of ignorability simplifies analyses with incomplete data, but if it is not satisfied, results may be incorrect. Therefore it is necessary to assess the sensitivity of empirical findings to this assumption. We have created a user-friendly and freely available software program to conduct such analyses.
One can evaluate the dependence of inferences on the assumption of ignorability by measuring their sensitivity to its violation. One tool for such an analysis is the index of local sensitivity to nonignorability (ISNI), which evaluates the rate of change of parameter estimates to the assumed degree of nonignorability in the neighborhood of an ignorable model. Computation of ISNI avoids the need to estimate a nonignorable model or to posit a specific magnitude of nonignorability. Our new R package, named isni, implements ISNI analysis for some common data structures and corresponding statistical models.
The isni package computes ISNI in the generalized linear model for independent data, and in the marginal multivariate Gaussian model and the linear mixed model for longitudinal/clustered data. It allows for arbitrary patterns of missingness caused by dropout and/or intermittent missingness. Examples illustrate its use and features.
The R package isni enables a systematic and efficient sensitivity analysis that informs evaluations of reliability and validity of empirical findings from incomplete data.
不可忽略性的常见假设简化了不完全数据的分析,但如果不满足该假设,结果可能是不正确的。因此,有必要评估经验发现对该假设的敏感性。我们创建了一个用户友好且免费的软件程序来进行此类分析。
可以通过衡量其对违反不可忽略性假设的敏感性来评估推断对该假设的依赖性。这种分析的一种工具是不可忽略性局部灵敏度指数(ISNI),它评估了在可忽略模型的邻域内参数估计值对假定的不可忽略程度的变化率。ISNI 的计算避免了估计不可忽略模型或假设不可忽略性的特定程度的需要。我们的新 R 包 isni 为一些常见的数据结构和相应的统计模型实现了 ISNI 分析。
isni 包在独立数据的广义线性模型、纵向/聚类数据的边缘多元高斯模型和线性混合模型中计算 ISNI。它允许由辍学和/或间歇性缺失引起的任意缺失模式。示例说明了其用法和功能。
R 包 isni 实现了一种系统且高效的敏感性分析,为从不完全数据中评估经验发现的可靠性和有效性提供了信息。