Ma Guoguang, Troxel Andrea B, Heitjan Daniel F
Clinical Biostatistics, Merck & Co. Inc., BL3-2, Blue Bell, PA 19422, USA.
Stat Med. 2005 Jul 30;24(14):2129-50. doi: 10.1002/sim.2107.
In longitudinal studies with potentially nonignorable drop-out, one can assess the likely effect of the nonignorability in a sensitivity analysis. Troxel et al. proposed a general index of sensitivity to nonignorability, or ISNI, to measure sensitivity of key inferences in a neighbourhood of the ignorable, missing at random (MAR) model. They derived detailed formulas for ISNI in the special case of the generalized linear model with a potentially missing univariate outcome. In this paper, we extend the method to longitudinal modelling. We use a multivariate normal model for the outcomes and a regression model for the drop-out process, allowing missingness probabilities to depend on an unobserved response. The computation is straightforward, and merely involves estimating a mixed-effects model and a selection model for the drop-out, together with some simple arithmetic calculations. We illustrate the method with three examples.
在存在潜在不可忽视的失访情况的纵向研究中,可以在敏感性分析中评估不可忽视性的可能影响。特罗克塞尔等人提出了一个针对不可忽视性的一般敏感性指数,即ISNI,以衡量在可忽视的随机缺失(MAR)模型邻域内关键推断的敏感性。他们推导了具有潜在缺失单变量结果的广义线性模型特殊情况下ISNI的详细公式。在本文中,我们将该方法扩展到纵向建模。我们对结果使用多元正态模型,对失访过程使用回归模型,允许缺失概率依赖于未观察到的响应。计算很简单,仅涉及估计一个混合效应模型和一个用于失访的选择模型,以及一些简单的算术计算。我们用三个例子来说明该方法。