Suppr超能文献

马尔堡病毒VP35的同源寡聚化对其在复制和转录中的功能至关重要。

Homo-oligomerization of Marburgvirus VP35 is essential for its function in replication and transcription.

作者信息

Möller Peggy, Pariente Nonia, Klenk Hans-Dieter, Becker Stephan

机构信息

Institut für Virologie der Philipps-Universität Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany.

出版信息

J Virol. 2005 Dec;79(23):14876-86. doi: 10.1128/JVI.79.23.14876-14886.2005.

Abstract

The nucleocapsid protein VP35 of Marburgvirus, a filovirus, acts as the cofactor of the viral polymerase and plays an essential role in transcription and replication of the viral RNA. VP35 forms complexes with the genome encapsidating protein NP and with the RNA-dependent RNA polymerase L. In addition, a trimeric complex had been detected in which VP35 bridges L and the nucleoprotein NP. It has been presumed that the trimeric complex represents the active polymerase bound to the nucleocapsid. Here we present evidence that a predicted coiled-coil domain between amino acids 70 and 120 of VP35 is essential and sufficient to mediate homo-oligomerization of the protein. Substitution of leucine residues 90 and 104 abolished (i) the probability to form coiled coils, (ii) homo-oligomerization, and (iii) the function of VP35 in viral RNA synthesis. Further, it was found that homo-oligomerization-negative mutants of VP35 could not bind to L. Thus, it is presumed that homo-oligomerization-negative mutants of VP35 are unable to recruit the polymerase to the NP/RNA template. In contrast, inability to homo-oligomerize did not abolish the recruitment of VP35 into inclusion bodies, which contain nucleocapsid-like structures formed by NP. Finally, transcriptionally inactive mutants of VP35 containing the functional homo-oligomerization domain displayed a dominant-negative phenotype. Inhibition of VP35 oligomerization might therefore represent a suitable target for antiviral intervention.

摘要

马尔堡病毒(一种丝状病毒)的核衣壳蛋白VP35作为病毒聚合酶的辅助因子,在病毒RNA的转录和复制中起关键作用。VP35与基因组包裹蛋白NP以及RNA依赖性RNA聚合酶L形成复合物。此外,还检测到一种三聚体复合物,其中VP35连接L和核蛋白NP。据推测,该三聚体复合物代表与核衣壳结合的活性聚合酶。在此,我们提供证据表明,VP35氨基酸70至120之间预测的卷曲螺旋结构域对于介导该蛋白的同源寡聚化是必不可少且足够的。亮氨酸残基90和104的取代消除了(i)形成卷曲螺旋的可能性,(ii)同源寡聚化,以及(iii)VP35在病毒RNA合成中的功能。此外,还发现VP35的同源寡聚化阴性突变体无法与L结合。因此,据推测VP35的同源寡聚化阴性突变体无法将聚合酶招募到NP/RNA模板上。相反,无法进行同源寡聚化并未消除VP35进入包含由NP形成的核衣壳样结构的包涵体的招募。最后,含有功能性同源寡聚化结构域的VP35转录失活突变体表现出显性负性表型。因此,抑制VP35寡聚化可能是抗病毒干预的合适靶点。

相似文献

1
Homo-oligomerization of Marburgvirus VP35 is essential for its function in replication and transcription.
J Virol. 2005 Dec;79(23):14876-86. doi: 10.1128/JVI.79.23.14876-14886.2005.
2
Interactions of Marburg virus nucleocapsid proteins.
Virology. 1998 Sep 30;249(2):406-17. doi: 10.1006/viro.1998.9328.
3
Crystal Structure of the Marburg Virus VP35 Oligomerization Domain.
J Virol. 2017 Jan 3;91(2). doi: 10.1128/JVI.01085-16. Print 2017 Jan 15.
4
Structural Insight into Nucleoprotein Conformation Change Chaperoned by VP35 Peptide in Marburg Virus.
J Virol. 2017 Jul 27;91(16). doi: 10.1128/JVI.00825-17. Print 2017 Aug 15.
9
Oligomerization of Ebola virus VP30 is essential for viral transcription and can be inhibited by a synthetic peptide.
J Biol Chem. 2003 Oct 24;278(43):41830-6. doi: 10.1074/jbc.M307036200. Epub 2003 Aug 11.
10
Insights into the homo-oligomerization properties of N-terminal coiled-coil domain of Ebola virus VP35 protein.
Virus Res. 2018 Mar 2;247:61-70. doi: 10.1016/j.virusres.2018.02.003. Epub 2018 Feb 7.

引用本文的文献

2
Ebola and Marburg virus VP35 coiled-coil validated as antiviral target by tripartite split-GFP complementation.
iScience. 2022 Oct 13;25(11):105354. doi: 10.1016/j.isci.2022.105354. eCollection 2022 Nov 18.
3
Identification and characterization of coiled-coil motifs across Autographa californica multiple nucleopolyhedrovirus genome.
Heliyon. 2022 Sep 10;8(9):e10588. doi: 10.1016/j.heliyon.2022.e10588. eCollection 2022 Sep.
7
Relevance of Ebola virus VP35 homo-dimerization on the type I interferon cascade inhibition.
Antivir Chem Chemother. 2019 Jan-Dec;27:2040206619889220. doi: 10.1177/2040206619889220.
8
Distinct Genome Replication and Transcription Strategies within the Growing Filovirus Family.
J Mol Biol. 2019 Oct 4;431(21):4290-4320. doi: 10.1016/j.jmb.2019.06.029. Epub 2019 Jun 29.
10
Virus and host interactions critical for filoviral RNA synthesis as therapeutic targets.
Antiviral Res. 2019 Feb;162:90-100. doi: 10.1016/j.antiviral.2018.12.006. Epub 2018 Dec 11.

本文引用的文献

1
Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses.
Nat Med. 2005 Jul;11(7):786-90. doi: 10.1038/nm1258. Epub 2005 Jun 5.
3
Inhibition of Marburg virus protein expression and viral release by RNA interference.
J Gen Virol. 2005 Apr;86(Pt 4):1181-1188. doi: 10.1099/vir.0.80622-0.
5
Multivesicular bodies as a platform for formation of the Marburg virus envelope.
J Virol. 2004 Nov;78(22):12277-87. doi: 10.1128/JVI.78.22.12277-12287.2004.
7
Oligomerization of Ebola virus VP30 is essential for viral transcription and can be inhibited by a synthetic peptide.
J Biol Chem. 2003 Oct 24;278(43):41830-6. doi: 10.1074/jbc.M307036200. Epub 2003 Aug 11.
10
Morphology of Marburg virus NP-RNA.
Virology. 2002 May 10;296(2):300-7. doi: 10.1006/viro.2002.1433.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验