Suppr超能文献

马尔堡病毒VP35寡聚化结构域的晶体结构

Crystal Structure of the Marburg Virus VP35 Oligomerization Domain.

作者信息

Bruhn Jessica F, Kirchdoerfer Robert N, Urata Sarah M, Li Sheng, Tickle Ian J, Bricogne Gérard, Saphire Erica Ollmann

机构信息

Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA.

Department of Medicine, University of California San Diego, La Jolla, California, USA.

出版信息

J Virol. 2017 Jan 3;91(2). doi: 10.1128/JVI.01085-16. Print 2017 Jan 15.

Abstract

UNLABELLED

Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (genera Marburgvirus and Ebolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif. This domain has been shown to be essential for RNA polymerase function. Here we present crystal structures of the MARV VP35 oligomerization domain. These structures and accompanying biophysical characterization suggest that MARV VP35 is a trimer. In contrast, EBOV VP35 is likely a tetramer in solution. Differences in the oligomeric state of this protein may explain mechanistic differences in replication and immune evasion observed for MARV and EBOV.

IMPORTANCE

Marburg virus can cause severe disease, with up to 90% human lethality. Its genome is concise, only producing seven proteins. One of the proteins, VP35, is essential for replication of the viral genome and for evasion of host immune responses. VP35 oligomerizes (self-assembles) in order to function, yet the structure by which it assembles has not been visualized. Here we present two crystal structures of this oligomerization domain. In both structures, three copies of VP35 twist about each other to form a coiled coil. This trimeric assembly is in contrast to tetrameric predictions for VP35 of Ebola virus and to known structures of homologous proteins in the measles, mumps, and Nipah viruses. Distinct oligomeric states of the Marburg and Ebola virus VP35 proteins may explain differences between them in polymerase function and immune evasion. These findings may provide a more accurate understanding of the mechanisms governing VP35's functions and inform the design of therapeutics.

摘要

未标记

马尔堡病毒(MARV)是一种高致病性丝状病毒,与埃博拉病毒(EBOV)分属于不同的属(分别为马尔堡病毒属和埃博拉病毒属)。两种病毒都产生一种多功能蛋白,称为VP35,它作为聚合酶辅因子、病毒蛋白伴侣以及先天免疫反应的拮抗剂发挥作用。VP35包含一个具有预测的卷曲螺旋基序的中央寡聚化结构域。该结构域已被证明对RNA聚合酶功能至关重要。在此,我们展示了马尔堡病毒VP35寡聚化结构域的晶体结构。这些结构以及伴随的生物物理特性表明马尔堡病毒VP35是三聚体。相比之下,埃博拉病毒VP35在溶液中可能是四聚体。这种蛋白质寡聚状态的差异可能解释了在马尔堡病毒和埃博拉病毒中观察到的复制和免疫逃逸机制的差异。

重要性

马尔堡病毒可引发严重疾病,人类致死率高达90%。其基因组简洁,仅产生七种蛋白质。其中一种蛋白质VP35对于病毒基因组的复制和逃避宿主免疫反应至关重要。VP35通过寡聚化(自我组装)来发挥功能,但其组装结构尚未可视化。在此,我们展示了该寡聚化结构域的两种晶体结构。在这两种结构中,三个VP35拷贝相互缠绕形成卷曲螺旋。这种三聚体组装与埃博拉病毒VP35的四聚体预测以及麻疹、腮腺炎和尼帕病毒中同源蛋白的已知结构形成对比。马尔堡病毒和埃博拉病毒VP35蛋白不同的寡聚状态可能解释它们在聚合酶功能和免疫逃逸方面的差异。这些发现可能为更准确理解VP35功能的调控机制提供依据,并为治疗药物设计提供参考。

相似文献

1
Crystal Structure of the Marburg Virus VP35 Oligomerization Domain.
J Virol. 2017 Jan 3;91(2). doi: 10.1128/JVI.01085-16. Print 2017 Jan 15.
4
Structural Insight into Nucleoprotein Conformation Change Chaperoned by VP35 Peptide in Marburg Virus.
J Virol. 2017 Jul 27;91(16). doi: 10.1128/JVI.00825-17. Print 2017 Aug 15.
5
Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism.
PLoS Pathog. 2012 Sep;8(9):e1002916. doi: 10.1371/journal.ppat.1002916. Epub 2012 Sep 13.
7
Structural basis for Marburg virus VP35-mediated immune evasion mechanisms.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20661-6. doi: 10.1073/pnas.1213559109. Epub 2012 Nov 26.
8
Insights into the homo-oligomerization properties of N-terminal coiled-coil domain of Ebola virus VP35 protein.
Virus Res. 2018 Mar 2;247:61-70. doi: 10.1016/j.virusres.2018.02.003. Epub 2018 Feb 7.
9
Impact of Měnglà Virus Proteins on Human and Bat Innate Immune Pathways.
J Virol. 2020 Jun 16;94(13). doi: 10.1128/JVI.00191-20.
10
Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins.
Cell Rep. 2016 Feb 23;14(7):1632-1640. doi: 10.1016/j.celrep.2016.01.049. Epub 2016 Feb 11.

引用本文的文献

3
Origin, Evolution and Diversity of φ29-like Phages-Review and Bioinformatic Analysis.
Int J Mol Sci. 2024 Oct 9;25(19):10838. doi: 10.3390/ijms251910838.
4
Emergence of Marburg virus: a global perspective on fatal outbreaks and clinical challenges.
Front Microbiol. 2023 Sep 13;14:1239079. doi: 10.3389/fmicb.2023.1239079. eCollection 2023.
5
Spatial and functional arrangement of Ebola virus polymerase inside phase-separated viral factories.
Nat Commun. 2023 Jul 13;14(1):4159. doi: 10.1038/s41467-023-39821-7.
6
Structural and biophysical characterization of the Borna disease virus 1 phosphoprotein.
Acta Crystallogr F Struct Biol Commun. 2023 Mar 1;79(Pt 3):51-60. doi: 10.1107/S2053230X23000717. Epub 2023 Feb 23.
7
Ebola and Marburg virus VP35 coiled-coil validated as antiviral target by tripartite split-GFP complementation.
iScience. 2022 Oct 13;25(11):105354. doi: 10.1016/j.isci.2022.105354. eCollection 2022 Nov 18.
8
Identification and characterization of coiled-coil motifs across Autographa californica multiple nucleopolyhedrovirus genome.
Heliyon. 2022 Sep 10;8(9):e10588. doi: 10.1016/j.heliyon.2022.e10588. eCollection 2022 Sep.
9
Pathogenicity and virulence of Marburg virus.
Virulence. 2022 Dec;13(1):609-633. doi: 10.1080/21505594.2022.2054760.
10
Structural and Functional Aspects of Ebola Virus Proteins.
Pathogens. 2021 Oct 15;10(10):1330. doi: 10.3390/pathogens10101330.

本文引用的文献

1
Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins.
Cell Rep. 2016 Feb 23;14(7):1632-1640. doi: 10.1016/j.celrep.2016.01.049. Epub 2016 Feb 11.
2
Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus.
Nat Rev Microbiol. 2015 Nov;13(11):663-76. doi: 10.1038/nrmicro3524. Epub 2015 Oct 6.
3
Oligomerization of Mumps Virus Phosphoprotein.
J Virol. 2015 Nov;89(21):11002-10. doi: 10.1128/JVI.01719-15. Epub 2015 Aug 26.
4
Assembly of the Ebola Virus Nucleoprotein from a Chaperoned VP35 Complex.
Cell Rep. 2015 Jul 7;12(1):140-149. doi: 10.1016/j.celrep.2015.06.003. Epub 2015 Jun 25.
5
6
The RNA synthesis machinery of negative-stranded RNA viruses.
Virology. 2015 May;479-480:532-44. doi: 10.1016/j.virol.2015.03.018. Epub 2015 Mar 29.
7
Automated de novo phasing and model building of coiled-coil proteins.
Acta Crystallogr D Biol Crystallogr. 2015 Mar;71(Pt 3):606-14. doi: 10.1107/S1399004714028247. Epub 2015 Feb 25.
8
Ebola virus VP35 interaction with dynein LC8 regulates viral RNA synthesis.
J Virol. 2015 May;89(9):5148-53. doi: 10.1128/JVI.03652-14. Epub 2015 Mar 4.
9
Structural insights into RNA encapsidation and helical assembly of the Toscana virus nucleoprotein.
Nucleic Acids Res. 2014 May;42(9):6025-37. doi: 10.1093/nar/gku229. Epub 2014 Mar 31.
10
Methods to refine macromolecular structures in cases of severe diffraction anisotropy.
Methods Mol Biol. 2014;1091:205-14. doi: 10.1007/978-1-62703-691-7_15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验