Suppr超能文献

人类手臂运动中的稳定性与运动适应性

Stability and motor adaptation in human arm movements.

作者信息

Burdet E, Tee K P, Mareels I, Milner T E, Chew C M, Franklin D W, Osu R, Kawato M

机构信息

Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore.

出版信息

Biol Cybern. 2006 Jan;94(1):20-32. doi: 10.1007/s00422-005-0025-9. Epub 2005 Nov 11.

Abstract

In control, stability captures the reproducibility of motions and the robustness to environmental and internal perturbations. This paper examines how stability can be evaluated in human movements, and possible mechanisms by which humans ensure stability. First, a measure of stability is introduced, which is simple to apply to human movements and corresponds to Lyapunov exponents. Its application to real data shows that it is able to distinguish effectively between stable and unstable dynamics. A computational model is then used to investigate stability in human arm movements, which takes into account motor output variability and computes the force to perform a task according to an inverse dynamics model. Simulation results suggest that even a large time delay does not affect movement stability as long as the reflex feedback is small relative to muscle elasticity. Simulations are also used to demonstrate that existing learning schemes, using a monotonic antisymmetric update law, cannot compensate for unstable dynamics. An impedance compensation algorithm is introduced to learn unstable dynamics, which produces similar adaptation responses to those found in experiments.

摘要

在控制中,稳定性体现了运动的可重复性以及对环境和内部扰动的鲁棒性。本文研究了如何在人体运动中评估稳定性,以及人类确保稳定性的可能机制。首先,引入了一种稳定性度量,它易于应用于人体运动且与李雅普诺夫指数相对应。将其应用于实际数据表明,它能够有效地区分稳定和不稳定的动力学。然后使用一个计算模型来研究人体手臂运动的稳定性,该模型考虑了运动输出的变异性,并根据逆动力学模型计算执行任务所需的力。仿真结果表明,只要反射反馈相对于肌肉弹性较小,即使存在较大的时间延迟也不会影响运动稳定性。仿真还用于证明,现有的使用单调反对称更新法则的学习方案无法补偿不稳定的动力学。引入了一种阻抗补偿算法来学习不稳定的动力学,该算法产生的适应反应与实验中发现的反应相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验